
www.manaraa.com

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/
M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved
from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed:
Date).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

www.manaraa.com

TESTING THE FUNCTIONALITY AND EFFECTIVENESS

OF SOFTWARE DEFINED NETWORKS

by

Adebayo Oluwaseun Adedayo

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Magister Ingeneriae)

in

Electrical and Electronic Engineering Science

Faculty of Engineering and Built Environment

at the

University of Johannesburg

Supervisor: Prof Bhekisipho Twala

Co-Supervisor: Dr Nnamdi Nwulu

December 2017

www.manaraa.com

ii

DECLARATION OF AUTHORSHIP

I, Adebayo Oluwaseun Adedayo, declare that this thesis titled, ‘Testing the Functionality and

Effectiveness of Software Defined Networks and the work presented in it are my own. I confirm

that:

• This work was done wholly while in candidature for a research degree at the University of

Johannesburg.

• This work has not been submitted anywhere else or by anyone else for academic purposes.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. Except for such

quotations, this thesis is entirely my own work.

Signed:

Date: 18/06/2018

www.manaraa.com

iii

ABSTRACT
An important part of Information Technology is networking which has made communication

between two or more computers or devices to be possible. Traditional network architecture is not

able to meet the challenges of the current trends in networking due to the complexity of handling

devices and its non-scalable nature. Software Defined Networking (SDN) is an emerging dynamic

approach to networking that makes use of logically centralized controllers in managing a network

thus simplifying network design and operation. The project involves the design of a prototype

network based on SDN architecture. An analysis of the network is conducted by considering

various aspects of the Software Defined Networks that affects its functionality such as transfer of

data between the control plane and the data plane. Furthermore, we analyse the use of virtualization

technology, troubleshooting and verification of the behaviour of SDN. Since SDN is a new

networking approach, there are various aspects of the technology that still needs to be understood

and improved. The aim of this research is to test the functionality and effectiveness of SDN and to

investigate various aspects of the architecture that affects its operation. Recommendations and

conclusions emerging from the analysis are made to enhance the understanding and functionality

of SDN.

www.manaraa.com

iv

ACKNOWLEDGEMENT

I would like to thank my supervisor Prof Bhekisipho Twala for his continuous support, motivation,

knowledge and patience. My appreciation also goes to Dr Nnamdi Nwulu for his support and

encouragement during the last few months of completing this thesis.

I would like to convey my gratitude to the National Research Foundation (NRF) for scholarship

provided during my research.

I thank my colleagues Mokesioluwa Fanoro and Vitalis Aguba for their support and productive

discussions.

Lastly, I would like to thank my parent and siblings for their support and my profound gratitude

to my lovely, understanding and patient wife Oluwasolami, my queen whom have been of great

help, support and relentless effort in every aspect and also my wonderful gifts from God Inioluwa

and Josiah for being part of the success. All the glory goes to God Almighty for making this

research a reality and for giving me support all round, Lord without you this will not be possible.

www.manaraa.com

v

DEDICATION

I would like to dedicate this thesis to God Almighty who save me and gives me the grace to

complete this degree;

My parent and sibling;

My lovely wife and wonderful children for their support.

www.manaraa.com

vi

TABLE OF CONTENTS
DECLARATION OF AUTHORSHIP .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

DEDICATION .. v

TABLE OF CONTENTS .. vi

KEYWORDS ... ix

ABBREVIATIONS AND NOTATIONS.. x

1. INTRODUCTION ... 1

1.1 Motivation ... 2

1.2 Importance of SDN .. 3

1.2.1 Benefits of SDN to Higher Institutions .. 3

1.2.2 Benefits of SDN to Industries .. 4

1.3 Economic Impacts of SDN ... 6

1.4 Problem Statement ... 6

1.5 Scope of the Research ... 7

1.6 Methodology ... 8

1.7 Structure of the thesis .. 8

2. LITERATURE REVIEW ... 10

2.1 Networking .. 10

2.2 The OSI Model ... 10

2.3 Virtualization ... 11

2.3.1 VLAN .. 13

2.3.2 Network Function Virtualization (NFV) ... 13

2.4 Quality of Service (QoS) .. 14

2.5 Data Centres.. 14

2.5.1 Multitenant Data Centres ... 15

2.6 History and the Need for SDN ... 16

2.6.1 Traditional Network Architecture ... 16

2.6.2 Limitations of Traditional Network Architecture .. 17

2.7 Software Defined Network ... 19

2.7.1 SDN Architecture ... 20

2.7.2 SDN Operation .. 21

www.manaraa.com

vii

2.7.3 SDN Controller .. 22

2.7.4 SDN Controller Core Module .. 23

2.7.5 SDN Controller Implementation ... 24

2.7.6 Types of Available SDN Controller .. 25

2.8 SDN in the Data Centres.. 26

2.8.1 The Need for SDN in Data Centres .. 26

2.8.2 Benefits of SDN ... 27

3. OPENFLOW .. 28

3.1 OpenFlow Enabled Switch .. 28

3.2 Understanding OpenFlow Enabled Switch.. 29

3.3 OpenFlow Table .. 30

3.3.1 Match Field or Packet Header ... 30

3.3.2 Priority ... 31

3.3.3 OpenFlow Table Pipeline Processing .. 32

3.3.4 Table-Miss Flow Entry ... 33

3.3.5 Instructions ... 33

3.3.6 Counters .. 34

3.3.7 OpenFlow Secure Channel and Control Channel .. 34

3.3.8 OpenFlow Secure Channel Messages ... 35

4. PROTOTYPE DESIGN AND IMPLEMENTATION .. 37

4.1 Laboratory Setup... 37

4.1.1 Mininet .. 37

4.1.2 OpenvSwitch ... 37

4.1.3 Controller Selection .. 38

4.1.4 Ryu Controller ... 38

4.1.5 RYU Application Creation Model and Operation Methodology ... 39

4.1.6 OpenFlow Event Classes ... 39

4.1.7 Other Tools Used .. 39

4.2 Experiment 1: Basic Network Setup.. 40

4.2.1 Result and Discussion .. 45

4.2.2 TCP Throughput .. 50

4.2.3 UDP Throughput ... 52

4.3 Experiment 2: VLAN in SDN .. 55

www.manaraa.com

viii

4.4 Conclusion ... 66

5. FIREWALL AND QoS IN SDN .. 67

5.1 Firewall .. 67

5.1.1 Scenario 1 .. 69

5.1.2 Scenario 2 .. 69

5.1.3 Scenario 3 .. 70

5.1.4 LATENCY AND THROUGHPUT .. 72

5.1.5 Conclusion ... 73

5.2 QoS in SDN .. 74

5.2.1 QoS Implementation in SDN ... 75

5.2.2 QoS Toolset ... 75

5.2.3 Experimental Setup and Methodology ... 76

5.2.4 Scenario 1 .. 77

5.2.5 Scenario 2 .. 78

5.2.6 Scenario 3 .. 79

5.2.7 Scenario 4 .. 80

5.2.8 Conclusion ... 83

6. SDN MONITORING AND VISUALISATION .. 84

6.1 Introduction .. 84

6.2 Monitoring, Visualizing and Measurement... 85

6.3 Design and Implementation .. 85

6.4 Real-Time OpenFlow Monitoring .. 86

6.5 Statistical Data Monitoring ... 88

6.5.1 NetFlow ... 88

6.5.2 sFlow ... 88

6.5.3 Flow monitoring with sFlow. ... 89

7. CONCLUSION ... 92

REFERENCES .. 95

www.manaraa.com

ix

KEYWORDS

Software Defined Networks (SDN), OpenFlow, Mininet, OpenvSwitch, Ryu, Virtualization.

www.manaraa.com

x

ABBREVIATIONS AND NOTATIONS

API Application Programming Interface

ARP Address Resolution Protocol

CAPEX CAPital EXpenditure

CLI Command Line Interface

CPU Central Processing Unit

DHCP Dynamic Host Control Protocol

DNS Domain Name System

DoS Denial of Service

DPID DataPath Identifier

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

IT Information Technology

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

JSON JavaScript Object Notation

KVM Kernel based Virtual Machine

LAN Local Area Network

LLDP Link Layer Discovery Protocol

MAC Medium Access Control

MPLS Multiple Protocol Label Switching

NAT Network Address Transaction

OFP OpenFlow Protocol

ONF Open Networking Foundation

www.manaraa.com

xi

OSI Open System Interconnection

OPEX Operating EXpenses

OSPF Open Shortest Path First

PC Personal Computer

QoS Quality of Service

REST REpresentational State Transfer

RIP Routing Information Protocol

SAN Storage Area Network

SDN Software Defined Networks

SNMP Simple Network Management Protocol

SSL Secure Sockets Layer

STP Spanning Tree Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

WAN Wireless Area Network

www.manaraa.com

1

1. INTRODUCTION
The explosion of connected devices on the network has led to network expansion which has led to

complexity in managing today’s network environment. Devices such as smartphones, tablets,

laptops and desktop computers in businesses, education sectors and industries are increasing

everyday which contributes to increase in bandwidth consumption. Management and configuration

complexity are also experienced by the system and network administrator’s due to increase in the

number of switches and routers in the network which are the result of exponential growth of

internet usage.

These problems were partially solved with the invention of virtualization and using load balancer

across the servers to control the load and bandwidth usage. Server virtualization and cloud

computing are the latest technologies used in datacentres which process a lot of data per second.

Some of the organizations with large data centres include Google, Apple, Facebook, E-bay and

Amazon. These data centres process and store large amount of data that rely on speed and

performance. Lack of consistency and dependency on various vendors still affect the quality of

server virtualization and cloud computing.

To meet the current demand and plan for future expansion, new and improved network architecture

is needed. This should address the complexity, scalability and consistency problems in today and

future networks. It will also need to be easily managed and easily adaptable to changes in network

topology, protocols and traffic control. The new networks need to be vendor-independent which

will enhance better network management and facilitate dynamic control of the network.

In lieu of this, a new concept was developed in networking named Software Defined Networking

(SDN). A Software Defined Network is an emerging norm in networking that promises to address

issues affecting the traditional network architecture and enable innovation in network management

and design [1]. SDN is also a new network architecture that separates the control plane from the

data plane making the split control plane to be programmable. To achieve this, the control plane

inside the networking device such as switches and routers are separated from the device and is

logically centralised and controlled.

This logically centralised control plane is called the controller. The controller consists of a software

that controls multiple data-plane, and is responsible for traffic forwarding from the data plane of

networking devices in the network and uses a standard protocol like OpenFlow. One of the most

important goals of SDN is to control all the networking devices from a logically centralised

controller without the need of controlling each device [1], [2].

The controller controls the state of the data plane using an Application Programming Interface

(API) such as OpenFlow. OpenFlow is the first standard protocol for SDN architecture and gives

a straight forward access to the forwarding plane. It also administers information on the data plane

networking devices [3]. OpenFlow was created at Stanford University and aimed to replace layer

2 and layer 3 protocols on the OSI model [4]. OpenFlow protocol serves as a bridge

www.manaraa.com

2

communication between the data plane and the logical centralised controller using a secured

channel connection [5]. Open Networking Foundation (ONF) was created by Google, Facebook,

Microsoft, Verizon, Yahoo and Deutche Telekom in 2011 to develop SDN and the use of

OpenFlow architecture in networking.

The foundation operates as a non-profit organization and it maintains OpenFlow standard. The

organization has been upgrading the specification of OpenFlow to add more functions and better

performances which will be effective in the software switches and hardware switches that are

OpenFlow compatible. The controller makes use of OpenFlow protocol to discover OpenFlow

enabled switch, their topology, collect statistics from the networking device and make forwarding

decision for the data plane.

1.1 Motivation

In testing the functionality and effectiveness of SDN as the new paradigm in networking, some of

the supported techniques and methodology on the traditional architecture will be examined. The

motivation behind this research is to test if SDN can be deployed in today’s networking

environment. Configuration of different networking devices from different vendors have always

been a tedious task today, likewise, the management of such networking devices have been

cumbersome as well. This research is to test the functionality and effectiveness of SDN and its

usefulness to overcome the tedious task, complex framework management, expensive capital

expenditure and operating expenditure faced using traditional network architecture. This is done

by running some experiments to check some networking scenario by analysing their functionality

and effectiveness.

Exponential growth of connected devices such as smartphones, tablets, laptop and desktop

computers to sites like Google, Facebook, Amazon, Netflix, Apple, Twitter, Instagram etc. has

given rise to constant upgrading of data-centres been used by such firms to accommodate the load

on their servers. This also gives rise to Big-data which evolves from the enormous amount of

processed and stored data been handled daily by data centres. Data centres need to handle very

high-speed connections across its networking device and distribute the load evenly across the

servers.

Data centres need a new way to network their devices across the networks and to make the

management of such devices easier without losing security, functionality and effectiveness of the

current network technologies. This research will also show how data centres can benefit from SDN

in the techniques used to network their devices and in managing deployed virtual machines

instances in the network. As more data are uploaded and downloaded every day, with new

applications coming up, cloud computing has helped developers to deploy their applications in the

cloud and encourage users to connect to websites running such applications. Cloud computing in

data centres has contributed immensely to IT development and SDN have been invented to make

their services better.

www.manaraa.com

3

Considering the number of connected devices in campuses in different higher institutions of

learning today, managing the devices on the networks are difficult and cumbersome and increases

the operating expenditure of the schools. Each node on the network can hardly be monitored due

to limited overview of networking devices and nodes on the campus network. Network

administrators will need to implement different policies and protocol services to monitor and

manage their networks. This comes at a cost to the schools and the objectives are not attained some

of the time.

A test-bed laboratory will be built on the laptop for testing the functionality and effectiveness of

SDN. Some experiments will be conducted to examine the objectives of this research on a LAN

with same subnet, VLAN, VLAN interconnectivity, QoS, traffic monitoring, and the application

of SDN in data centres. Though additional features are added to OpenFlow protocol to enhance

the use of SDN in networks, current features will enable dynamic IT-level architectures, for

example, multi-tenancy in Cloud computing organization [6].

1.2 Importance of SDN

SDN is important to many organisations and academic institutions depending on the sub-sector of

the institution which will define the method of deployment to be used. Various network spheres

such as wireless access networks, enterprises, ISP, home, small business and data centres can adapt

SDN technology into their system [7], [8]. The use of OpenFlow protocol in SDN makes it easier

for SDN enabled networking device to interface with traditional networking devices.

Software Defined Networking is cheaper to run and it’s cost effective. Organizations with large

data centres will benefit more from the cost effectiveness. This is because only one protocol is to

be used to control flows in the network which makes the network to be easily managed. New

services and policies deployment are faster in SDN than in traditional network architecture and

this is a great importance of SDN to organizations.

SDN offers a simple and easy to use service management for network monitoring, QoS, firewall

and other services. When we consider an IT organization, the administrator in a lower level can

easily understand the importance and use of SDN on a network, and can also adapt to

implementation of the technology in a network environment. Ability to view all the networking

devices in the network with the use of API in SDN is another importance that makes SDN a

technology to be embraced as it offers a better a network environment.

1.2.1 Benefits of SDN to Higher Institutions

SDN started as a university research centre where research was being conducted to find a new way

of testing new services and policies without the need to shut down the networking devices and to

master or use all the protocols in networking. One of the first benefits of SDN to higher institutions

of learning is the provision of a new research field in networking. Universities have one of the

highest connected devices in the network which is growing higher as more students enrol.

www.manaraa.com

4

Managing such a big network has not been easy because traditional network is difficult to manage,

and very costly to run.

SDN will benefit Universities by making it easier to configure all the networking devices on the

network. SDN also make network management easier than traditional network architecture, and

without the need for specialized proprietary hardware to be used in the network. Higher institutions

will also benefit from SDN with the reduction of capital expenditure (CapEx) incurred to purchase

new networking devices which are expensive, the use of OpenFlow enabled devices in the network

will reduce CapEx because these devices are not proprietary and are cheaper than the proprietary

systems [9].

Deployment of new services on the school data centres can be virtualised and provided to the users

whenever the services are required. Virtualization of services on the servers will eliminate the need

for Universities to purchase new hardware to install the required services. These services can be

first tested on virtual machines and deployed to the virtual servers. The load across the virtualized

servers can then be balanced using OpenFlow protocols [10].

SDN gives flexibility and innovations to the University’s network manager to explore different

applications of SDN to enhance better service on the network and easier management of

departmental local area network. For instance, faculty administration and finance departments can

make use of virtual networking in SDN without the need for VLAN which will involve the

configuration of each networking devices in the respective departments. SDN will also enable the

network and system administrator to have a full overview of the whole University network which

may comprise of one or more campuses with a city across different geographical locations. This

will make management of devices on the network less cumbersome and new network capabilities

can be easily deployed. SDN will also increase uptime and reduce downtime, it will also improve

planning because of using centralised overview of the entire network.

1.2.2 Benefits of SDN to Industries

Industrial sectors that benefit most from SDN are Cloud computing service providers with services

such as Amazon Elastic Computer Cloud (EC2), Windows Azure, Google App Engine and

Rackspace Cloud servers [11], [12]. They provide infrastructure for service providers which in

turn provide services to end users by building different services which include application, hosting,

content delivery, search engine etc. This is achieved using multiple virtual machines created which

holds services to be deployed to end-users [10]. Apart from the Cloud computing giant named

above, every organisation with internet facility can benefit from SDN in different ways ranging

from savings on their expenditure to simplicity in running their services. Industries can benefit

immensely from SDN in a variety of ways, some of which are listed below:

• Complexity Reduction: SDN reduces the complexity associated with network

configuration and management using the traditional network architecture. SDN reduces

complexity by offering a flexible network management framework. A framework can be

www.manaraa.com

5

designed to automate many management tasks that are done manually in today’s network.

The use of automated network in the network will reduce operational overheads, decrease

network instability and makes SDN a number one choice in managing Cloud-based

application [3].

• Low Capital Expenditure: SDN with the use of OpenFlow enabled networking devices will

lower the capital expenditure (CapEx) in an organisation by making use of available

equipment and only purchase required OpenFlow enabled devices. Using vendor-neutral

devices are cheaper and easier to maintain than vendor-dependent devices because the

producers of the former are increasing these days which is one of the reasons responsible

for the low prices. The use of virtualization also lowers the CapEx to be incurred in

purchasing new devices. Virtual networking of switches and servers can be used with SDN

to save cost of purchasing new network devices [13].

• Lower Operating Expenditures: The survey performed with network administrators,

Operating Expenditures (OpEx) has a higher impact on the organisational cost than CapEx.

There is lower operating cost due to improved network management with the use of

logically centralised control management. SDN reduces the need to hire highly specialised

skilled engineers to maintain and manage the network, the less complex framework used

in SDN will only require lesser highly skilled engineers to manage the network [13].

• Centralised control of multi-vendor environments: SDN controller software makes the

management of the entire network to be easier by providing tools for faster configuration

and updating of devices on the network. SDN makes this to be easily achievable by

controlling any vendor OpenFlow enabled networking device [3].

• Policies are faster and easier to deploy: Deployment of policies is faster and easier in SDN

because of using virtualised networking environment. Network policies can be tested easily

and later deployed after achieving the desired goal or can be deploy as at when needed by

making use of automatic framework that can be used with SDN.

• Higher rates of Innovation: SDN adoption by IT industries and other organisations will

give rise to reprogramming of the network in real time to meet specific needs. SDN makes

use of virtualization to achieve most of its purpose, the use of virtualization in SDN will

increase the eagerness of engineers to explore different applications of SDN and to

investigate new services, deploy new services and new network capabilities using SDN

[14].

• Virtualize Network Environment: The use of SDN in virtualization of networking device

on the networking and data centres has helped IT department and organisation to reduce

the capital expenditure. First, the need to purchase new device has been drastically reduced.

Secondly, the time needed to configure each physical networking device has been reduced

because virtual networking device and virtual machines are used to perform the same

operations needed and its deployment is even faster than physical machines [14].

• Downtime reduction: Downtime will be drastically reduced with the use of SDN. This can

be achieved from the virtualization of networking device which reduces the time for

www.manaraa.com

6

upgrade of such devices. The use of snapshot of device configuration in SDN will help

system administrators to quickly recover devices back to previous state in case there is a

failure after upgrading [14].

• Multi-tenancy and Isolation: Servers and networking devices can be isolated from one

another in an SDN environment without the need for commonly used VLAN. Servers,

applications and networking device can be virtualised and deployed within minutes saving

time and capital expenditures. SDN can use latest technology to virtualise and isolate each

of these virtualised services on the network.

1.3 Economic Impacts of SDN

The economic impacts of SDN also need to be reviewed to have knowledge ahead before adopting

SDN into the networking environment. Considering demand and supply of networking devices,

SDN will offer more benefits to the economy. Some of which are listed below:

• As demand for OpenFlow enabled networking devices are increasing, so also is the supply

which in turn makes the networking device vendors to supply more to their distributors.

Using the law of demand and supply, this will generate more profits for networking device

vendors.

• For the consumers, SDN based devices will come at a cheaper rate than the proprietary

traditional networking devices. This will make consumers to purchase required devices

needed at a cheaper rate. It will also give room to homes and smaller offices to use a

standard OpenFlow enabled devices, the standard which they cannot afford before.

• There will be more markets for non-popular vendors and new vendors will also emerge to

take their share of the market as well. These vendors may target personal use and small

organizations to sell their product and even provide assistants in setting up the devices.

• Lower price of OpenFlow enabled SDN devices will help large organisations to save more

on their CapEx which will be a huge savings considering replacement of devices or

upgrading of their devices.

• Savings on OpEx will also be huge because SDN will allow organisations to deploy policy

faster, shorten development and test cycles, and improve operational efficiency.

• Another economic impact of SDN is the reduction of energy consumption which means

huge savings for large data centres. Power management feature can be implemented in data

centres to lower power consumption during off-peak periods.

1.4 Problem Statement

The main objective of this research is to test the functionality and effectiveness of Software

Defined Networks. Functionality means quality of being functional or quality of being suited to

serve a purpose well, while effectiveness means doing the right thing or the capability of producing

www.manaraa.com

7

the desired result. In other words, this research is testing how functional SDN is and the capability

of producing desired results of computer network communication using SDN. These desired

results include the use of SDN in virtual environment to emulate physical network environment

that will be used to perform different functionalities testing on the network using multiple

scenarios.

The research also involves the use of OpenFlow protocols which is the protocol used in SDN for

communication among the network devices on the network. OpenFlow protocol use OpenFlow

table which consist of flow entries that are used for forwarding decision making whenever there is

a match on the flow table. OpenFlow works by encapsulating other protocols such as ARP and

ICMP. Forwarding of packets with the use of OpenFlow tables will be analysed. This will entail

the use of Linux commands and applications to achieve the desired goal. To have a good network

environment, some network functionality should be in place; some of this functionality will be

examined. These include:

• Virtual Local Area Network: VLAN is used in schools, organisations and industries to

segregate the network and to reduce congestion on the network by creating smaller

networks with lesser congestion on the network

• Firewall: Firewall is used to secure the network to avoid unnecessary guest, hackers or

intruders on the network

• Quality of Service (QoS): QoS is used in networking to manage the network resources. The

research will run experiment on how a good quality of service can be implemented in the

network to manage the network resources better.

• Traffic management: This include traffic monitoring and measurement. Traffic

management provides a way of monitoring and measuring the traffic in the network to

provide better services. This can be used in conjunction with QoS to provide a better

service.

With the use of the available resources and techniques, this thesis will lay a foundation upon which

future researches in SDN can be and shows how various techniques can be used in testing the

functionality and effectiveness of SDN to provide a better service in future network

1.5 Scope of the Research

The scope of this research will be on LAN, although there are other possible aspects of networking

all other ways or approach are not the focus of this research. The focus of this research is to test

the use of SDN technology in networking by analysing the functionality in Local Area Network

environment as well as its effectiveness.

Software Defined Networks is becoming the future technology in networking which most of the

network vendors, telecommunication companies, ISP, search engines, data centres and cloud

www.manaraa.com

8

service providers are adopting. SDN is aiming to be the main technology in networking in

organisations network which include server networking, network across physical and virtual

networking devices and in data centres.

The functionality and effectiveness of SDN in a LAN environment will be explored. Although it

is possible to adapt this testing to other forms of network environment, this possibility is not

investigated in this thesis. This thesis will consider the use of some applications and operating

systems to perform the required experiments. Other applications that can be used will not be

discussed in detail.

1.6 Methodology

To achieve the objectives of this research, focus will be given to understanding of SDN and how

a Local Area Network (LAN) based on SDN can be developed. This involves the dedicated survey

of the available literature on SDN. An overview concept will also be presented to highlight the

root of SDN.

It is highly essential to know the importance of network monitoring, Quality of Service (QoS) and

Address Resolution Protocol (ARP). After going through different literature and background study

on SDN, some suggested applications and techniques that are easier to deploy are implemented.

A prototype network based on SDN architecture will be designed for evaluating the functionality

and the effectiveness of the network with focus on the operation of SDN on a LAN environment.

The prototype network will make use of OpenFlow protocol since this is the first and the most

used and readily available protocol for now. The implementation of the prototype will serve as a

test bed for the research and provide usage of the network and the programmability of the network.

The RYU controller will be used as the main controller which will also serve as the brain of the

network. RYU is chosen because it is written in Python programming language and it is easier to

deploy and readily available. More details are shown in the first section of Chapter four which

gives more into materials, applications and software that are used.

1.7 List of Publications

1. A. O. Adedayo, B. Twala, "Testing the Functionality of Firewall in Software-Defined

Networking," Artificial Intelligence and Evolutionary Computations in Engineering Systems,

Singapore, 2018, pp. 1-4. doi: 10.1007/978-981-10-7868-2_1
2. A. O. Adedayo, B. Twala, "QoS functionality in software defined network," 2017 International

Conference on Information and Communication Technology Convergence (ICTC), Jeju, 2017,

pp. 693-699. doi: 10.1109/ICTC.2017.8191068

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8125636
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8125636

www.manaraa.com

9

1.8 Structure of the thesis

This thesis is structured into six chapters with references of the literatures cited in the thesis. Below

are the details of the chapters.

Chapter 1 briefly introduces the thesis and outlines the research. It also includes the problem

statement that describe the main objectives of the research and methodology that talk about the

approach used in solving the problem.

A survey of current works relating to computer network, including some key fundamentals in

networking is given in chapter 2. Background works on SDN is also shown reflecting the history

of SDN, benefit of SDN over conventional networks and other details.

Chapter 3 presents OpenFlow protocol as the major protocol used in SDN. OpenFlow protocol

background and its effect, as well as support in SDN are discussed in detail. These include versions

created and the current supported version in this thesis is being discussed as well.

The prototype network testbed which involve the use of different network scenario to test the

functionality and effectiveness of SDN is shown in chapter 4. It describes experiments that test

major network functions that are available on current network which include flooding, pinging,

Address Resolution Protocol (ARP), forwarding, and VLAN implementation in SDN.

Chapter 5 is the continuation of the research that shows more depth into advanced functionality of

SDN and their effectiveness with experiments on network which include firewall and Quality of

Service (QoS).

Chapter 6 shows SDN monitoring and visualization with webGUI. This involves monitoring with

OpenFlow and statistical method.

The conclusion and future works identified during the research is given in chapter 6.

The references are in the last sections that contain details of information used.

www.manaraa.com

10

2. LITERATURE REVIEW

2.1 Networking
A computer network can be defined as a set of connected devices or nodes which can be a

computer, laptop, printer, mobile devices or other devices that can send and receive data on the

network. Networking can be the connection of two or more devices together with the ability to

communicate with each other [15].

Computer networks can be categorized mainly according to the geographical area they cover. The

two main categories are Local Area Network (LAN) which covers a few kilometres and Wide Area

Network (WAN) that span across countries and continents. There is also Metropolitan Area

Network (MAN) span tens of kilometres and the network size is in between LAN and MAN.

Local Area Networks (LANs) are usually privately-owned networks within a single building or

campus of up to few kilometres in size. LANs are used in the connection of personal computer and

workstation in office and factories to share resources (such as printers and scanners) and to

exchange information [16]. Metropolitan Area Network (MAN) covers tens of kilometre or a city.

An example of MAN is cable television network service available in many cities. Wide Area

Network (WAN) spans across large geographical area, these may be countries or continents. It

may consist of two or more LANs connected.

The connection of interconnected networks is referred to as INTERNET. Earlier before the 1970s,

network device manufacturer had their own communication standard on their devices. This makes

devices made by other vendor incompatible, thus leaving a big problem in the communication of

devices in the network. The lack of communication standard among various network devices has

led to the creation of Open System Interconnection (OSI) model in the late 1970s. The model was

created as a standard for vendors to make all network devices compatible with each other.

2.2 The OSI Model

The International Standards Organisation (ISO) created a reference model to be used by all

network vendors and to serve as a communication stack, and it’s called Open Systems

Interconnection (OSI) [17]. OSI model was created in the late 1970 as a standard that covers every

area of network communication and it is designed as a network architecture that is robust,

interoperable and flexible [15]. Its main goal is to create an avenue for vendors to manufacture

interoperable network devices and make use of protocols that can make communication between

the networking devices possible [17].

It is a layered structure that shows the process of communication of data and network information

between application on one computer system through network media and application on another

system [17].

www.manaraa.com

11

The OSI has seven layered structure namely:

• Application layer (layer 7)

• Presentation layer (layer 6)

• Session layer (layer 5)

• Transport layer (layer 4)

• Network layer (layer 3)

• Data link layer (layer 2)

• Physical layer (layer 1)

A summary of each layer is listed below:

• Physical layer – The physical layer moves bits between devices. It also specifies voltage,

wire speed and pin-out cables.

• Data link layer – The data link layer transforms the physical layer raw transmission to a

reliable link. It combines packets into bytes and bytes into frames. It also provides access

to media using MAC address. It performs error detection and not correction [15], [17].

• Network layer – The network is responsible for the source-to-destination delivery of packet

across multiple networks. It manages device addressing, track the location of devices on

the network and determines the best way to move data [17].

• Transport layer – Transport layer provides reliable or unreliable delivery. It also performs

error correction before retransmitting. TCP and UDP are protocols at the transport layer.

• Session layer – Session layer provides dialogue control between devices or nodes and

basically keeps different applications data separate. It is also responsible for setting up,

managing and then tearing down sessions between presentation layer entries [17].

• Presentation layer – Presentation layer prevents data to the application layer and is also

responsible for data encryption compression and translation services.

• Application layer – Application layer enables the user to communicate to the computer. It

provides user interface and support for services such as electronic mail, remote file access

and transfer and other forms of information services [15].

Some key technologies and management techniques used in networking which include

virtualization, VLAN, NFV and QoS are discussed below.

2.3 Virtualization

Virtualization is the process of creating a virtual, rather than physical version of something; this

may include operating systems, servers, networks, applications and storage devices [18]. IBM

implemented virtualization to partition their mainframe computers in the 1960s to save cost of

buying more hardware. Virtualization was more popular in the 1980s and 1990s but uses declines

due to the lower cost of hardware available at the time. However, virtualization became popular

www.manaraa.com

12

again in the 2000s to reduce cost of hardware and the carbon emission in datacentres and to save

wasted processing power in the datacentres.

The major forms of virtualization include:

• Operating system virtualization is the use of virtualization software to allow a piece of

hardware or a host with an operating system to run multiple operating system images at the

same time [19].

• In server virtualization, the server resources (such as number and identity of physical

servers, processors and operating systems) are concealed from server users [19].

• Storage virtualization involves the pooling of physical storage from multiple network

storage devices into what appears to be a single storage device that is managed from a

central console.

• Network virtualization is a method of combining the available resources in a network by

splitting up the available bandwidth into channels, each of which is independent from the

others, and each of which can be assigned (or reassigned) to a server of devices in real

time. It also allows multiple virtual networks over a physical network. Some of the

technologies that use network virtualization include VLAN, VxLAN, NVGRE and Nicira

NVP [19], [20], [21].

Virtualization software that is used to execute virtualization simply decouples the software from

the hardware by creating an abstract layer known as hypervisor, between the virtual machine and

the host operating system. Most popular virtualization software includes Oracle VirtualBox,

VMware player and VMware workstation [22].

A Virtual Machine (VM) is an independent virtual computer system with an operating system

running inside the virtualization software and uses the available hardware resources of the host

machine [18]. Multiple VM can run inside one host using the virtualization software. The

hypervisor acts as a controller between the hardware and the virtual machines and it’s used to

monitor the virtual machines by assigning resources to the virtual machine as at when required

[22].

Considering server virtualization, there are three main technologies which are listed below:

• Full virtualization uses a technology that allows different operating systems to be installed

on the virtual machine without the need for modification. The installed guest operating

system has no knowledge of the host operating system. The hypervisor is used to manage

the hardware resources allocated to the guest OS which include CPU instruction, memory

and hard-disk. Oracle VMserver and VMware both use this technology.

• Para-virtualization technology is based on the modification of the guest operating system

which makes it to be aware that it is running on a virtual machine. The virtual machine is

www.manaraa.com

13

aware of the hypervisor and collaborates with the hypervisor to reduce processor overhead.

Xen is an example of Para-virtualization [19].

• Virtualization at the OS layer works differently; the technology makes the host to run a

single OS kernel as its core and exports operating system functionality to each of the guests.

To achieve this, the guest must use the same operating system as the host due to OS kernel

export functionality between them. This architecture eliminates system calls between

layers, which also reduces CPU usage overheads. Oracle Solaris zones, docker, lxc, lxd

and virtuozzo are examples of OS-level virtualization [19].

2.3.1 VLAN

Virtual Local Area Network (VLAN) is a logical group of devices or users grouped by function,

department or application irrespective of their physical location on the LAN [23]. VLAN is used

to create smaller broadcast domain; with the introduction of VLAN, this broadcast domain may be

broken into smaller broadcast domain thereby reducing broadcast in the network. This is because

each VLAN is treated like separate subnet with one broadcast only to switch ports on the VLAN.

Hosts on one VLAN cannot communicate with hosts on another VLAN, for inter-VLAN

communication a router is needed to route the traffic among the VLANs. VLAN uses an identifier

to recognize each VLAN in each network and uses 12 bits. The maximum usable VLANs on a

given Ethernet network are 4094 because of the 12 bits used.

2.3.2 Network Function Virtualization (NFV)

NFV made his first appearance in 2012 and was proposed by European Telecommunications

Standards Institute (ESTI). It was formed to address the need for additional hardware appliances

whenever a new network service is required. The space to accommodate the appliances and

increase cost of power consumption, capital investment toward the possession of the appliance and

scarce skills required to incorporate for network operators [24].

In NFV, network functions such as firewalls, routers, load balancers and network address

translation which are normally deployed on dedicated physical appliances, will be partially or

completely implemented as software. Their functions are virtualized and installed on universal

servers [25].

 NFV is used to reduce high Capital Expenses (CAPEX) for initiating services provided by the

network service provider as well as reduction of Operation Expenses (OPEX) for servicing and

maintaining the equipment and power consumption of the network equipment [24], [26]. Some of

the benefits of Network Function Virtualization include:

• Lower cost of devices and lower power consumption by devices.

• It helps in reducing cost by providing more better efficient test and integration on the same

infrastructure.

• It enables operators to provide support and services to multiple users using multi-tenancy

system.

www.manaraa.com

14

• It makes use of power management features to reduce energy consumption on the servers.

• It enhances operational efficiency of the network and provide robust support for other

platforms.

2.4 Quality of Service (QoS)

Quality of Service (QoS) is a set of techniques used to manage network resources. QoS is a

technique used to control traffic priority on the network such as managing delay, delay variation,

packet loss and bandwidth. QoS policing feature is used to regulate the maximum bandwidth that

any user can use. This is useful on networks where some users are using high-speed broadband

connection and consume almost all the available bandwidth on the network leaving the user with

lesser bandwidth [27], [28].

With the advent of Voice over IP (VOIP) and video conference, QoS has been a useful tool to

deliver a better service efficiently on the network. VOIP is a higher priority service on the network

that should be void of packet loss, delay, jittering and high latency which will have great effect on

the quality of the voice call.

QoS is used to provide optimal performance for a variety of applications and services on the

network and it’s also useful in giving access to the right host or application to use the required

amount of network resources which may be real-time or non-real-time [29]. Some of the ways

QoS can be implemented include:

• Policing involves dropping traffic over a specified limit. It uses a logic of ensuring that no

traffic exceeds the maximum rate (in bits/sec) that the network administrator configures,

which also ensures that no one traffic flow can take over or consume the entire network

resource.

• Traffic Shaping is used to match device and link speeds, which controls packet loss,

variable delays and link saturation, which can cause jitter and delay [28].

• Priority queuing involves placing a specific class of traffic in the Low Latency Queue

(LLQ), which is processed before the standard queue.

2.5 Data Centres

Prior to the advent of data centres regarding features as it is today, organisations make use of

servers to perform their computing, storage and networking which is normally kept in the server

room. This server can possibly be called data centre considering some of the features it possesses

[30]. The server room consists of enterprise desktop PC with higher performance than PC used

individual. This server has the functionality to compute and store data being used by the

organisation.

www.manaraa.com

15

Due to the exponential growth of data being processed and stored by today’s organisation, the

enterprise server used earlier in the server room cannot handle the computing speed and power,

the increased data processing and storage, and the highly-demanded network speed that is required

to deliver the service needed. Data centres came into existence to handle the required services and

demand in today’s IT infrastructure.

A data centre can be described as a centralised IT infrastructure that can perform operations and

services either in physical form or virtual form for management, dissemination and storage of data

and information [30], [31]. Data centres run servers and storage equipment that can run application

software, process and store data needed for the organisational needs or needed by other

organisations to run their businesses [32]. Data centres were originally created to physically

separate traditional computing elements, their storage elements and the networks that interconnect

them with the client users [4]. As demand increases, virtualization of the computer and storage

section in the data centres come into place to manage available resources effectively and to reduce

capital expenditure and operational expenditure.

Data centres can be classified into internet or enterprise. Internet-facing data centres are browser-

based and support averagely few applications, it also has many users which are usually unknown,

while enterprise (or internal) data centres on the other hand host more applications and services to

fewer users [31]. A modern data centre comprises of computer, storage and network resources,

and it may exist as a private data centres within an organisation’s facility or may be maintained by

service providers with specialised facilities such as Amazon and Google that provide services to

individuals or organisations in the form of cloud services.

2.5.1 Multitenant Data Centres

Service providers provide multitenant services to their customers. Multitenancy is the terminology

used in data centres which means the provision of services such as own (virtual) network to each

tenant given them the ability to manage the virtual network in a similar way that they would

manage a physical network.

Multitenancy gives the data centres provider the ability to host hundreds or even thousands of

tenants or customers on their hardware in the same location or across multiple locations. This is

done through virtualization of its resources i.e. a single set of physical hardware can host multiple

tenants with access to the server, storage and the network. Virtualization is done using virtual

machines that run on the hardware to provide components needed by the tenants and must be

within the available resources of the underlying equipment.

www.manaraa.com

16

2.6 History and the Need for SDN

2.6.1 Traditional Network Architecture

Different networking devices operate at the specific layer of the OSI model. Considering a

traditional Local Area Networking (LAN), there are layer 2 devices such as switches and layer 3

devices like routers. These devices have three planes which are data plane, control plane and

management plane. Networking equipment vendor has created network operating system or

firmware that operates on these devices. This firmware enables the device to perform accordingly

on the OSI model level in which it belongs to and thus process the data by analysing the packet

header and forward or drop the packet based on the decision made.

A typical networking device consist of data plane, control plane and management plane. The

management plane is part of control plane used for network management such as monitoring and

configuration.

The control plane is the brain of the device where the decisions are made. It is the firmware

developed by network device vendors to process the operations and switching of packets in the

network. The control plane is responsible for making sure the information in the forwarding table

are current and processing of multiple protocol that may have effect on the forwarding table.

Network-wide active topology is also the responsibility of the control protocols to keep which is

an important role that cannot be neglect [33].

The data plane is the hardware with various ports which are used for transmission and reception

of packets and it also contains a forwarding table in its affiliated logic. The data plane is responsible

for packet buffering, packet scheduling, and header modification and forwarding. Figure2.1 below

shows the roles of each plane in a network device.

Regarding SDN, data plane and control plane will be our focus. The operation involves the use of

a routing information base (RIB) in the control plane as a data set in storing the network topology.

The RIB passes the information to the forwarding information base (FIB) which is mirrored

between the control and data plane of a typical device [4].

The forwarding table makes use of the information provided by the FIB and uses it in forwarding.

As shown in figure 2.1, the relationship between the data plane, the control plane and the

management plane has been displayed with key features of each plane. It shows functions of the

control plane and the data plane and the use of the management plane in monitoring the status and

the statistics of the network using compatible protocols.

The forwarding decision determined as per information in the RIB is communicated internally to

the data plane FIB which is used in forwarding of packets. Networking device vendors such as

Cisco, HP and Juniper has their own proprietary Operating Systems (OS) running on their devices.

This led to rigidity in devices used in network and complexity. This makes the network

www.manaraa.com

17

administrator to learn how to operate and configure different vendor devices on the network. It has

also made the introduction of different new device into the network to be cumbersome.

2.6.2 Limitations of Traditional Network Architecture

The current network architecture has some limitations which makes it hard to provide solutions to

new technology development, increasing connected device and enormous data processed by data

centres on daily basis. Data centres are becoming congested as the number of online connected

devices are increasing. Administration of network devices in organization and data centres

equipment is becoming more tedious because the traditional network architecture is not designed

to meet the current requirements by enterprises, organizations and today’s users. Some of the

limitations of current network include:

• Complexity – The process of adding more devices to the network have become complex

and time consuming. There will be need for the network administrator to configure multiple

switches, routers, and firewall and update the access control lists and other protocol-based

Figure 2.1: Roles of control, management and data plane [33]

www.manaraa.com

18

mechanism. Network topology, software version on the device and vendor switch model

must also be taken into consideration, all this has made today’s network relatively static

whereas the today’s server environment is dynamic in nature.

In addition, server virtualization is increasing, with the use of load-balancer to access

applications distributed across multiple virtual machines. This has not been an easy task to

implement for service providers without considering the static nature of current network.

The current network does not conform to the dynamic changing traffic patter which arose

from the use of IP voice and data service and different QoS to maintain the reliability of

the service.

• Inconsistent policies – In current network technology, implementing a network-wide

policy will require the configuration of new devices; bring up new virtual machines and

reconfiguration of access control list across the entire network. This complexity has led to

inconsistency in the security, QoS and other policies that need to be implemented across

the network.

• Inability to scale – To deliver higher value, better services to customers, the network need

to be scalable. The use of multi-tenancy technological services to customer also complicate

scalability as multi-tenancy is created to serve group of users with different applications

and different performance needs. To meet client requirements, some specialized devices at

the network edge is needed which thus increases the capital expenditure (CAPEX) and

operational expenditure (OPEX).

• Vendor dependence – Deployment of new capabilities and services to adapt to changing

business needs has been hindered by different vendor equipment that lacks a standard that

can make the device to easily communicate with each other.

A new network architecture is needed to be created that will be simple, independent, with non-

proprietary software and be an open standard accepted by all network device vendors. The

architecture should also have provision for future expansion without the need for expensive

network edge devices. This new architecture is called Software Defined Networking (SDN). The

new network architecture is needed to drive the latest computing trends that the old network

architecture cannot address. These driving trends include the following [3]:

• Changing traffic pattern

• Rise of cloud service

• Big data

SDN was created as a solution to the limitation of the old network architecture and to address and

proffer broader ways to the above latest computing trends.

www.manaraa.com

19

2.7 Software Defined Network

Software Defined Networking is an emerging network architecture where the control plane is

separated from the data plane. SDN makes the network to be programmable and it isolate the

control plane from the data plane and provides a logically centralized controller that acts as the

brain of the network. The physical abstraction of the control plane from the data plane is a great

innovation that gives room for network programming, flow control, forwarding decision and

policies to be implemented from the control plane. This also makes each layer to be independent

and enable faster, easier and simpler programming of the networking devices in the network [1],

[2].

The history of SDN can be traced back to 2003 when ForCES (Forwarding and Control Element

Separation) was proposed by two Intel employees H. Khosravi and T. Anderson. The proposition

was to separate the forward element (data plane) from the control element (control plane) in the

network device [34].

“Clean Slate” program was formed in 2005 in Stanford University in the United States of America.

It was formed to investigate if there are any fault in the current network architecture and to make

the current network architecture better. Clean Slate concluded that the network should contain a

separated plane to make decision in controlling the whole network. Clean Slate proposed a

centralised system that will be able to monitor the whole network and make traffic forwarding

decision based on the information provided in the control plane tables [35].

The breakthrough that made SDN what it is today started as part of Clean Slate program at Stanford

University. The program was called Ethane. Ethane was first implemented in 2006 as a new

network architecture that provides a simple powerful management model. Ethane gives the

network administrator to set policy rules for different protocols and users. The two biggest

advantages of Ethane are the use of very simple hardware switches that are cheap to manufacture

and a central controller that makes all the decision to be used in forwarding by the connected

switches. Ethane uses a different protocol for communication between the controller and switches,

this protocol later became OpenFlow protocol which is the major protocol used by controllers in

SDN today [35], [36]. OpenFlow protocol will be further discussed in Chapter 3.

To implement Ethane in a larger network, the distance and location of the controller to the switches

must be put into consideration. To address this issue, Software Defined Networking was formed

and it uses a logically centralised technology to communicate with the switches. SDN has been

designed to make abstraction of the control plane from the data plane easier. ISP and cloud

computing firms will benefit a lot from SDN as it has made deployment of services easier, faster

and cost effective.

www.manaraa.com

20

2.7.1 SDN Architecture

The main objective of SDN is to decouple the binding between the software and hardware existing

on the same networking device. This is achieved by decoupling the control plane from the data

plane, and the control plane is logically centralised in software based SDN controllers. These

controllers are used to maintain global view of the entire network. With the use of the controller,

the whole network appears as a single logical switch [3].

With SDN, network administrators manipulate traffic from a logically centralised controller by

gaining vendor-independent control over the entire network. This will eliminate the need to

configure each switch in the network. It also eliminates the need for different protocols in the

network as the communications between the controller and switches are simplified using the

protocol they both understand.

SDN architecture shown in figure 2.2 basically consists of three layers namely: Application layer,

control layer and Infrastructure layer.

The application layer refers to all applications in the network, this include business application,

analytical, networking management applications and other SDN applications. The control layer

refers to the control plane. The SDN controller resides in this layer. The controller acts as the brain

of the network and it connects to the application layer and infrastructure layer. The infrastructure

layer is basically the data plane where the network devices are located.

Figure 2.2: SDN Architecture [3]

www.manaraa.com

21

The control layer connects to the application layer via the application programming interface

(API). This connection interface is called Northbound API. Northbound API is programmable and

is used in abstraction of the network devices and topology. It has not been standardized yet but it

is exposed using Representational State Transfer (ReST) which also makes the interaction easier

using JavaScript Object Notation (JSON) or eXtensible Markup Language (XML). Some

developer also uses Java and Python programming language. The ReST is used as a tool to write

set rules that are installed on the networking devices as flows and are used for forwarding,

dropping, or analysing the incoming packets [33].

The infrastructure layer refers to the entire physical network infrastructure. The data plane resides

in this layer. Network device such as switch that performs packet-forwarding is independent and

only receive forwarding decisions regarding processes from the control plane which is logically

centralised in the network. The Southbound API connects to the infrastructure layer using the

OpenFlow. The OpenFlow protocol is used to program the network devices and it is a standard

protocol, unlike the Northbound. The Southbound interface makes multi-vendor communication

possible in the network.

SDN brings simplicity into the networking making the need to understand and process different

protocols by different networking devices and standards that are no longer needed as all protocols

are encapsulated in OpenFlow protocol, networking device thereby receive instructions from the

controller for decision making. Logically centralised SDN controllers make it easier to deploy new

policy or to alter the network behaviour in real-time. With the use of automated SDN programs in

the logically centralised controllers, network administrators are more flexible to configure,

manage, secure and optimise network resources. In conclusion, SDN makes use of intelligent co-

ordination to simplify the management of the entire network.

2.7.2 SDN Operation

The basic components of SDN are the SDN devices, the controllers and the applications. The SDN

devices such as switch contain forwarding rules to make decision on the received incoming

packets. This forwarding rule is called flow entry and it is used to match the incoming packet with

the available flow entries in the switches. Flow entries are made up of flows which are also data

defined by the controller. Flows are set of packets transferred from one network endpoint or sets

of endpoints to another endpoint or sets of endpoints [33].

A flow table contains series of flow entries and the action to perform when the packet matching

the flow arrives at the SDN device. The process of operation of SDN is illustrated in the figure

2.3. Basically, the switches are controlled by the controllers. When a packet is received by the

switch, it checks the flow table for matching in the flow entries. Flow entries may either be

installed reactively or proactively. Reactive flows are setup dynamically for each new flow

forwarded to the controller by the switch while proactive flows are setup statically earlier before

the arrival of the packet by the network administrator [37].

www.manaraa.com

22

After the switch checks for a match in its flow table, if a match is found, the switch decides to

forward the packet as per instructions and actions configured in the flow table. If no match is

found, the switch may either drop the packet or pass it to the controller to make decision on the

packet, either to drop it or to install a new flow on the switch which will then forward the packet.

The SDN controller is the brain of the network and it functions by giving right to SDN application

to define flow on the network devices. It also helps the application to respond to forwarded packets

by the SDN devices to the controller. The SDN applications interface with the controller and are

built on top of the controller. It is primarily used to set flows on the device [33]. The process

involves the SDN application instructing the controller to respond to the incoming packets by

adding new flow entries in the flow table. This will enable the device to respond to the packet next

time it sees the packet that belongs to the flow [33], [37].

2.7.3 SDN Controller

The controller is the central nervous system in SDN and it manages all network devices residing

in the data plane. It also offers the calling of the network resource service for the applications in

the upper application plane which is the northbound API [38]. The controller is used in the

implementation of policy decisions, this includes forwarding, redirecting, load balancing and

monitoring. Most controllers in use today have some common application modules in-built, this

include learning switch, a router, a basic firewall and load balancer [33].

Figure 2.3: SDN Operation [33]

www.manaraa.com

23

The SDN controller anatomy showed in figure 2.4 shows the controller’s core functionality

including the northbound API with few applications, the modules and a southbound API. The

southbound API uses OpenFlow and it is standardised. It interfaces with the SDN devices. Some

other proprietary standards also exist apart from OpenFlow and they all exist on the same

controller. The northbound API, on the other hand, has not been standardised which is an issue for

the controller-to-application interface in SDN. Some of the major and popularly used API in SDN

is REST, Python, and Java [33].

2.7.4 SDN Controller Core Module

The SDN controller is the core components of SDN and it is responsible for decision making

regarding forwarding actions of the network devices and processing of various information.

The major core features in the controller include:

• End-user device discovering – End user devices such as laptops, desktops, mobile devices

and printers are discovered.

• Link discovery module – Controller discover the entire network information which include

network devices such as switches, routers and wireless access points [38].

• Network device topology management – The module generates the network topology, store

the topology, calculate the forwarding path and monitors the network status [33], [38]

• Flow management – these modules is responsible for maintaining the flow database being

managed by the controller. It also coordinates synchronisation of device flow entries with

the database [38].

Figure 2.4: SDN Controller Anatomy [33]

www.manaraa.com

24

2.7.5 SDN Controller Implementation

One of the earlier problems of SDN and SDN controller design is the controller location. The

separation of control plane from the data plane is the strength and major fundamental of SDN and

it is also the main controversial issue as well. The separation which is an advantage of SDN over

the current network enables the network administrator to control, monitor and manage the entire

network by having a full overview of the network [4]. The controller location has effect on the

resiliency and high-availability of the network which led to three different types of separation

which are explained in full details below:

Centralised Control Plane

The major advantage of centralised control plane is to have a full view of the network and its

ability to deploy application faster. The size of the network and location of the controller will be a

determining factor in the performance of the network. The listed factors below will affect the

performance of centralised control plane:

• Scale – Increase in the network size and volatility will require increase in per-session input-

output and processing. Management and data analysis of the network as it grows bigger

will also be a great burden.

• High Availability – Perhaps the scale problem can be handled by one controller, but a

single controller makes the network to have a single point of failure which will have impact

on the network. Therefore, a standby combination of controllers will be required to have a

high availability network.

• Geography – The location between the controller and the controlled device must be taken

into consideration. City, state or national separation between two will result in transmission

and increase the risk of separating the controller from the device.

According to Nadeau [4], it can be deduced that strictly centralised controller will perform very

well in research and experimental SDN.

Distributed Control Plane

Distributed control plane uses a model that makes the reconfiguration of the network easier as it

does not have a single point of failure but rather incorporate individual element or their proxies to

make reachability possible and to have an over view of the entire network [4]. The use of multiple

control planes which are interconnected together to have a view of the network will give rise to

some problems which are listed below:

• Possible convergence delay and difficulty

• Difficulty in horizontal scaling to add new device and to view the network

• Increasing number of control plane to configure and manage.

The major benefit is the instance of one control plane per device and it is proved to be highly

resilient to failure.

www.manaraa.com

25

Logically-Centralized Control Plane

Due to the problems with strictly centralised and distributed control plane, a conclusion has been

reached to balance the merits and demerits of the two to have a better scalable, secure and better

performance network. A logically-centralised control plane was implemented. It also has the

advantage single configuration points which will then synchronise to all other interconnected

controllers in the network. It is much easier to scale horizontally; new instances are only needed

to achieve this [4].

The major demerit is that it is also resilient to many failure points, but this only happen during

synchronisation which can be limited by using secured and fast convergence. It can be concluded

that centralising the control plane in a logically centralised but physically distributed model makes

more sense in respect to scale, high-availability and geographical perspective.

2.7.6 Types of Available SDN Controller

Controllers come in different forms based on the programming language used and market focus.

Different controllers have emerged since the inception of SDN and OpenFlow. Earlier controller

focused on building API support while this was changed recently to include performance

enhancement and scalability [39]. Some of the available open-source controllers are:

• NOX: NOX was the first OpenFlow controller created by Nicira networks. It is based on

C++ programming language [37], [40].

• POX: POX is a variant of NOX and it is a Python based development platform. The

topology can be queried and has support for visualization [40].

• MUL: MUL is a C based multi-threaded controller. It is designed for performance and

reliability [40].

• Trema: Trema is a full-stack, easy-to-use framework for developing OpenFlow controllers

in Ruby and C. it was created by NEC electronics [37], [41].

• Beacon: Beacon is a Java-based controller created in Rice University and it supports both

event-based and threaded operations [37], [40].

• Floodlight: Floodlight is a Java-based OpenFlow controller forked out from Beacon

controller. It is an enterprise-class, Apache-licensed and was developed at Stanford

University [42].

• Ryu: Ryu is a component based SDN framework developed by NTT in Japan. It provides

a well-defined API that allows developers to make new network management and control

applications [43].

• OpenDaylight: OpenDaylight was founded by Linux Foundation and is a Java-based

controller. It is a highly modular, extensible, scalable and multi-protocol controller built

for SDN [44].

Some of the available special purpose controllers that perform specific functions include

the following:

www.manaraa.com

26

• FlowVisor is a network slicer that acts as a transparent proxy between OpenFlow switches

and multiple OpenFlow controller [40], [45].

• RouteFlow is an open source project that is used to provide virtualised IP routing services

over OpenFlow networks [46].

• SNAC: SNAC is a C++ based OpenFlow controller built on NOX, which uses a web-based

policy manager to manage the network [40].

• Oflops: Oflops is an acronym that stands for OpenFlow Operations per second. It is a

standalone controller that benchmarks various aspects of OpenFlow switch [40].

• Resonance is a Network Access Control application built using NOX and OpenFlow [40].

2.8 SDN in the Data Centres

The sudden increase in the data processed by data centre, the size of the data centre and the speed

of operation needed in processing such high volume of data in todays’ data centres have been a

difficult task in the operations of data centres because the current topology was not designed to

handle such enormous data processing.

2.8.1 The Need for SDN in Data Centres

Today’s data centre requirements include efficiency, agility, scalability, easier to deploy and easier

to manage multitenancy, network virtualization and simplicity. All these are the reason for

adoption of SDN in data centres to provide solution to these problems which are complex and

difficult to solve using today’s current network architecture and other problems that may arise in

the future [47]. SDN with OpenFlow can be used to monitor the entire network to know status of

the networking devices in the network. Application may be deployed to power off obsolete virtual

machines and network devices that are not used at a time to save cost on energy used in the data

centre. SDN will help data centres to overcome the current network limitation in data centres by

providing some of the solution listed below:

• SDN provides an easier scalable architecture in data centre by making use of already

existing tunnelling technology and virtual networks which can span to millions of virtual

switches in the data centres and making use of OpenFlow Protocol to make the scaling

much easier than current network architecture.

• Adding, moving and deleting resources in data centre is promised to be easier with SDN

which will make SDN-enabled data centres to be more agile in automating these actions

dynamically.

• Failure recovery in today’s data centre is complex due to the size and scale of data centres.

The use of SDN in covering the complete view of the entire network makes it easier to get

the best result in failure recovery.

• SDN will help data centres to customise routing and traffic engineering. A proper

measurement and monitoring tools must be in place to monitor and calculate the best path

www.manaraa.com

27

for the network traffic in the data centre and in interconnection of different data centres

through the east-west traffic. This happens when different sections of data are being stored

in different data centre locations and the data need to be pulled to make up a whole required

data.

In summary, the use of SDN in data centres will help to provide better services, better control,

better scalability, cost efficiency and fault tolerance which the current network cannot offer.

2.8.2 Benefits of SDN

Through logically-centralised controller, SDN gives network manager the flexibility to

programme, configure, manage, secure and optimise network resources via dynamic automated

SDN programs. Operations and management complexity have been reduced since the inception of

OpenFlow-based SDN. SDN enables enterprises and carriers to address higher bandwidth

requirements and ever dynamic change in today’s services [3]. Some of the benefits of OpenFlow-

based SDN include:

• Centralized control of multivendor environments: SDN controller can control any

OpenFlow-enable network device from any vendor. SDN-based management tools and

API can be used very fast to configure, deploy and update network devices across the entire

network.

• Reduced complexity through automation: Improved automation and management using

API to reduce Operational Expenses (OPEX) and to deliver a better service.

• Higher rate of innovation: SDN gives network to rapid innovation with the ability to deploy

new policies and services across the network without the need to reconfigure each network

device.

• Increased network reliability and security: Centralised and automated management of

network devices and uniform policy enforcement have increased the reliability of the

network. It also reduces configuration errors which occur during configuration of

individual network devices in the network.

• More granular network control: OpenFlow-based implemented network can apply wide-

range policies at the session, user, devices and application level to support multi-tenancy

in the cloud environment.

• Better user experience: Centralised network control has helped infrastructure to adapt to

users’ needs [3].

In conclusion, literature review on SDN has been written in this chapter to provide information on

SDN and all the necessary information that need to be known on the topic. The next chapter will

go into more details on OpenFlow as a protocol to be used in this research.

www.manaraa.com

28

3. OPENFLOW
OpenFlow is the first communication standard for SDN and it was standardised by the Open

Networking Foundation (ONF) [48]. OpenFlow idea was first proposed in March 2008 initially

for researchers to perform experiment on daily used network like campus and for network vendors

to implement OpenFlow in their switch products. This started by some researchers with Martin

Casado at the forefront of the research which is the continuation of Ethane research at Stanford

University [36]. Network researchers always face problem of switches with proprietary operating

system running on them. There are also additional protocols running on the network as well.

Testing of experimental innovative ideas over the traditional networking environment has never

been easy which prompted the concept of OpenFlow.

The concept of OpenFlow in SDN is to enable researchers to execute experiments and run it on a

vendor-neutral hardware to write programmes that run on the hardware at line rate. This is done

through the abstraction of the control plane from the data plane i.e. the separation of the control

plane from the forwarding or data plane of a switch. This separation makes OpenFlow a standard

communication interface between the control plane and the forwarding plane. It also empowers

the controller to communicate with multiple network devices on the network.

The control plane which acts as the controller is moved to a centralised location to the networking

device. The controller connects securely to the OpenFlow switches using OpenFlow protocol and

can perform different functions such as adding, updating and deleting flow entries from the

switches. OpenFlow uses flow tables which are like lookup tables in traditional switches and

routers. The flow tables in the data plane can perform some layer 3 functions like the lookup table

which include forwarding, metering, shaping, and firewall at line rate [36].

The flow table contains flow entries which are used in forwarding decisions. The decisions are

based on match and action rules which can be created by the controller or modified by the network

administrator via the logically centralised controller. Management of the entire network is also

done via the logically centralised controller using the OpenFlow protocol.

3.1 OpenFlow Enabled Switch

OpenFlow enabled switches can be either hardware switches or software switches.

1. Hardware OpenFlow switches are OpenFlow enabled switch that have been designed and

produced by networking device vendors. Some of the vendors that are already producing

OpenFlow enabled switches include Arista, Cisco, Brocade, Dell, Extreme Networks, HP,

IBM and Juniper [49].

2. OpenFlow-enabled software switches make use of software to implement switching

functions and execute on a computer system, it can also be used in a virtual environment.

Some of the available OpenFlow enabled software switches include the following:

www.manaraa.com

29

a. OpenvSwitch – OpenvSwitch is a multilayer software switch designed to

implement a production quality switch platform and to enable massive network

automation through programmatic extension. It also supports standard management

interfaces and protocols. OpenvSwitch is the most popular readily available

OpenFlow software switch for SDN. It is mostly used as a virtual switch in virtual

machine (VM) environment. It was designed to support distribution across multiple

physical servers and across multiple Linux-based virtualization technologies such

as Xen, KVM and VirtualBox. It also supports some commonly used protocol in

networking including Netflow, sFlow, IPFIX, RSPAN, CLI, LACP and 802.1ag

[50], [51].

b. Pica8 is an open switch software platform for hardware switching chips that include

layer 2 and layer 3 and support for OpenFlow and other SDN features.

c. Indigo virtual switch is a lightweight, high-performance virtual switch with

OpenFlow protocol support and designed to enable high-scale network

virtualization applications [52].

d. Ofsoftswitch13 is an OpenFlow 1.3 compatible user-space software switch [53].

3.2 Understanding OpenFlow Enabled Switch

An OpenFlow enabled switch is connected to the controller via a secured channel using the

OpenFlow protocol. The controller communicates with the switch via a secure channel that use

SSL or TLS and they both exchange security certificates for their authentication. The switches also

communicate with the hosts and the hosts can communicate with each other as well. OpenFlow

message are exchanged between the controller and the switch to configure, monitor and manage

the network. A connection diagram depicting their communication is shown in figure 3.1. An

OpenFlow enabled switch consists of at least three parts namely:

1. A group table and one or more flow tables that make forwarding decision based on the

match action associated with each flow entry in the flow table [54], [55].

2. One or more secure OpenFlow channel that connects the switch to the controller. The

channel uses TLS or SSL to allow command and packets to be sent between controller and

the switch using the OpenFlow protocol.

3. OpenFlow protocol provides an open and standard way of communication between the

controller and the switch. With the use of OpenFlow protocol, the controller can perform

many functions with the ability to add, update, and delete flow entries in flow tables both

reactively and proactively.

www.manaraa.com

30

3.3 OpenFlow Table

Packet forwarding in an OpenFlow enabled switch that make use of one or more flow tables to

store flow entries. On receiving an incoming packet in a flow table, a flow entry lookup is

performed and instructions related to the flow entry are executed if there is a match in the flow

table. If there is no match, the switch will take over the decision which depends on the

configuration of the switch. Each flow entry has instructions related to the modification and

forwarding of the packets in the flow table. According to OpenFlow specification, each OpenFlow

entry has the following actions identified with it:

• To forward the flow’ s packets to a given port

• To encapsulate and forward flow’s packets to a controller

• To forward the flow’s packets to the next flow table

• To drop the flow’s packets [56].

Each flow entry consists of the following components namely: Match fields, Priority, Counters,

Instructions, Timeouts, Cookie and Flags [55]. Some of these components are explained further in

the following sections.

3.3.1 Match Field or Packet Header

The match field is used to match against incoming packet header after the table lookup have been

performed first to decide on the forwarding. The match field contains some specific pipeline field

use in the match, some of which are ingress port, metadata, Ethernet source, Ethernet destination,

Ethernet frame type, VLAN id, VLAN priority, MPLS label, IPv4 source address, IPv4 destination

Figure 3.1: Main component of an OpenFlow Switch [55]

www.manaraa.com

31

address, IPv4 protocol, ARP code, TCP, UDP, SCTP source and destination port, ICMP type and

ICMP code. Only the required fields are used for the Match fields while other fields are wild-

carded out. Figure 3.2 shows the flow chart for the flow of packet through an OpenFlow switch.

The incoming packet starts at table 0 and look for a match in the flow table, if there is a match then

the action set, metadata and other required fields counters are updated after which the flow is sent

out by executing the action set associated with the flow. If there is no match then, then flow will

be sent to table-miss flow entry after which the packet may be dropped if there is no match in the

table-miss flow entry, but if there is a match then it will update the counters and then sent out for

action [55].

3.3.2 Priority

The process of table lookup against the incoming packet makes use of priority component in the

flow entry. In matching of the packet against the flow table, the selection is based on the matching

of the packet with the flow entry with the highest priority. If there is a flow entry with multiple

matching and possession of flow entry with same highest priority, the flow choice to be used in

that case is not determined. It is the duty of the controller to specify desired priority and over-

lapping flows by setting the OFPFF_CHECK_OVERLAP bit on flow mod messages to avoid

multiple matching flow entries.

Figure 3.2: Flow chart showing packet flow through an OpenFlow switch [55]

www.manaraa.com

32

3.3.3 OpenFlow Table Pipeline Processing

The OpenFlow table pipeline processing determines the process and the interaction of packets with

OpenFlow tables. Pipeline processing specifies the packets process and forwarding by the switch.

An OpenFlow switch (hardware or software based) consist of one or more flow tables, with each

flow table containing multiple flow entries. An OpenFlow switch with one flow table has a very

simple pipeline processing and it is also valid [55].

OpenFlow tables are sequentially numbered starting at 0 up to nth table. Figure 3.3 shows the

details of the pipeline processing from packet-in to packet-out. The pipeline processing for packet

that enters the switch start at flow table number 0, by matching the incoming packet again flow

entries of flow table number 0. If a match is found, the instruction set associated with that flow

entry is executed. The instructions may contain actions or modified the pipeline processing. An

example of instruction that contains a forwarding action is shown in table 3.1

Header Field Actions Priority

if IP_address = = 192.168.1.10 re-write to 10.0.0.2, forward port 2 32768

Table 3.1: Flow table with forwarding action example

Figure 3.3: Packet flow through the processing pipeline [55]

www.manaraa.com

33

The priority is also taken into consideration in the forwarding, after a match has been found in the

table number 0, the instructions associated with that flow entry where a match has been found will

be executed and the instructions may also send the packet to another flow table using one of the

required instruction type named Go-to Table Instruction.

Pipeline processing uses the Go-to instruction to specify the next flow table to direct the packet

into which can only be a flow table with higher number than its own. This shows that pipeline

processing can only be executed in forward direction. Instructions used to modify packet header

and update the match fields are performed before the new match is executed.

If there is a match in the new table, another set of instruction will be applied to the action set in

the flow table. This process is repeated throughout every subsequent table in the pipeline

processing until a match is found which puts an end to pipeline processing at the table where there

is a match, after which the action sets associated with the packet are executed and the packet is

then forwarded [55], [56]. In the case where there is no match for the packet against all flow entries

in the flow table, this is usually referred to as table-miss.

3.3.4 Table-Miss Flow Entry

Table-miss comes into action when there is no match for the packet against the flow entries in the

flow table. It is ideal for every flow table to support a table-miss flow entry to process table misses.

Table-miss flow entry has the entire match field wild-carded and has the lowest priority of 0 [55].

The controller may add the table-miss flow entry because it does not exist by default. Table-miss

can also be removed by the controller and it expires over time. Table-miss flow entry is used in

the processing of unmatched flow entries in the table. These processing include the following

possible actions associated with table-miss flow entry which are:

1. The packet is sent to the controller using the controller reserve port

2. The packet is dropped

3. The packet is directed to another table with higher table ID than the current table.

3.3.5 Instructions

Instructions are used to perform operation on packet after a packet has been matched against flow

entry. An OpenFlow switch must support the required instructions and optional instructions which

may be a choice to set [55]. Some of the supported instructions types are:

• Write-Actions, actions – Required

• Go-to table, next-table-id – Required

• Meter, meter_id – Optional

• Apply-Actions, actions – Optional

• Clear-Actions – Optional

• Write-Metadata, metadata/mask – Optional

www.manaraa.com

34

Instructions contain actions or modified pipeline processing that are associated with each flow

entry. The actions are used to decide on the packet modification, packet forwarding, group table

processing while pipeline processing decides on the forwarding of packets to another flow table

with higher table_id than the current table for processing.

3.3.6 Counters

Counters are used to take statistics of all events on an OpenFlow switch. These include statistics

across various parameter on an OpenFlow switch which includes; flow table, flow entry, port,

queue, group, group bucket, meter and meter band. An example of using counters are, the packet

received and packet transmitted on a port in an OpenFlow switch [55].

In summary, OpenFlow switch consists of a flow table which is used for packet lookup and

forwarding. Each flow table also consists of flow entries which contain component fields like:

a. Packet header or Match field with information such as ingress port, metadata and others

used for matching against incoming packets

b. Priority is used in the matching of the highest priority (highest number) flow entries against

the packet to decide on forwarding the packet.

c. Counters are used to take statistics of event in an OpenFlow switch. Statistics such as

number of received packets for a flow, number of bytes for a flow and duration of the flow.

d. Instructions that need to be applied to a matched packet against flow entries that decides

on the processing of the packet which might be to forward the packet, pass it to the next

table, pass it to the controller or drop the packet.

When an OpenFlow switch receives a packet in an OpenFlow network environment, the OpenFlow

switch parses the packet header field and check for a match against the match field component of

the flow table entries. The matching starts at the first flow table (number 0) and continues through

subsequent flow table entries in the pipeline processing. If a match exists, the switch applies the

specific instruction associated with the matched flow entry. In matching, priority is given to flow

entry with the highest priority number. The counters then update the matched flow entry after each

flow entry match against the packets. The flow table must also have the table-miss flow entry to

further process unmatched flow entries in the table and then decide on what to do with the packet,

which may be to forward the packet to the controller, drop the packet or direct the packet to another

flow table for pipeline processing [2].

3.3.7 OpenFlow Secure Channel and Control Channel

The OpenFlow secure channel is the interface used for communication between OpenFlow

controller and OpenFlow switches. OpenFlow controller uses this interface to configure the switch,

manage the switch, receives events from the switch, and sends packets out of the switch. The

control channel may support single or multiple OpenFlow channel to communicate and manage

multiple switches on the network. The OpenFlow secure channel communication is encrypted

using TLS which is more secured than TCP, although TCP may also be used.

www.manaraa.com

35

3.3.8 OpenFlow Secure Channel Messages

The OpenFlow protocol supports three types of messages over the OpenFlow channel, namely:

controller-to-switch, asynchronous and symmetric. The three are explained in detail below:

Controller-to-switch Messages

The controller-to-switch messages are established by the controller and sent to the switch over

secured channel to inspect the state of the switch, configure the switch and manage the flow tables

[55]. These messages may require response from the switch and sometimes may not necessarily

require a response from the switch. The messages have the following attributes:

• Features – A features request message is sent to the switch requesting the identity and

capabilities of the switch. The switch in return must respond with a feature reply message

specifying the identity and capabilities of the switch.

• Configuration – This message allows the controller to configure the switch with needed

parameters. Response is then received from the switch and the required information is sent

to the controller

• Modify state – These messages are sent by the controller to the switches to manage the

switches and it can add, delete and modify flow/group entries in the OpenFlow tables and

set switch port properties.

• Read state – These messages are used by the controller to collect statistics, current

configurations and capabilities from the switches.

• Packet out – The Packet-out messages are used by the controller to forward packet received

via Packet-In messages out of specified port on the switch.

• Barrier – There is barrier request messages and reply messages that are used by the

controller to ensure messages are delivered accordingly and to receive notification of

completed operation.

Asynchronous Messages

Asynchronous messages are set-up by the switch and sent to the controller to notify the controller

of packet arrival, switch state change or error. These messages are sent without the controller

soliciting for the messages from the connected switches [55]. Asynchronous messages are of four

main types namely:

• Packet-In: Packet-In event messages are sent to the controller for decision making; this

happens whenever there is no match in the flow entry or the table-miss flow entry, or

whenever there is a match with actions that orders the switch to send the packet to the

controller such as TTL checking. Some switches have the capabilities to buffer packets,

such switches are therefore configured to buffer the packets and send only some fraction

www.manaraa.com

36

of the packet header with default 128bytes. The controller uses buffer-id to identify each

buffered packet when the switch forwards the packet.

• Flow-Removed: Flow removed messages are sent to the controller whenever flow entries

are removed from the flow tables. Flow removal can either be because of idle timeout or

hard timeout associated with each flow entry. Idle timeout can be set to a specific number

of seconds in which the flow entry will expire and be removed if there is no match with

the flow entry over the period given; while hard timeout is set to many seconds which will

denote the lifetime of the flow and will be removed when the set time has been reached.

• Port-Status: Port status message is used to inform the controller of changes on the status

of a port, for example, if the port was brought down.

• Error: This message is used by the switch to notify the controller of any problem that

arises.

Symmetric Messages

Symmetric messages are sent in either direction by the controller or the switches [55]. These can

be in the form of:

• Hello: Hello messages are exchanged between the switch and the controller when the

connection starts-up

• Echo: These messages are in request/reply type. These messages can be sent by either the

switch or the controller and must return an echo reply to verify the live-ness of a controller-

to-switch connection, to measure bandwidth and latency.

• Experimenter: This is for future uses and provides a standard way for additional

functionality to be added to OpenFlow messages in an OpenFlow switches.

In conclusion, OpenFlow protocol is a great protocol for networking with a lot of features that are

easily configured and managed. More features are being added to enhance the use and the

productivity of the protocol in SDN.

www.manaraa.com

37

4. PROTOTYPE DESIGN AND IMPLEMENTATION
To achieve the objective of this research, a prototype LAN network was built. This was achieved

by choosing design format that is readily available and adaptable. The following sub-headings

listed the materials, Operating systems, applications and laboratory set-up used to achieve the aim

of this thesis. Other Operating systems, applications and materials are listed in the subsequent

subsections as they are used.

4.1 Laboratory Setup

A virtual network environment was set-up using a laptop with a quad core Intel Core i5 clocking

at 2.6GHz and has 16GB of RAM. The laptop was running Windows 10 operating system as host.

The prototype design requires a virtual network environment with the use of virtual machine (VM).

VirtualBox virtualization software from Oracle was installed on the Windows 10 host for settling

a working virtual network environment. VirtualBox was chosen because it is free and readily

available. Ubuntu 14.04 Linux Operating system was then installed on the VirtualBox which then

run as a VM on the Windows host. OpenFlow specification 1.3.4 was installed at the time of

starting this research. Newer versions have been released as well but this specification was chosen

because it was supported by the virtual switch and controller being used at the time this research

is being conducted. All other configuration was done by installing necessary applications and

dependencies required to achieve the aim of the research. Some of the remaining applications

needed are listed below.

4.1.1 Mininet

Mininet is the main application that will be used to build the virtual network environment. Mininet

is a network emulator that creates a realistic virtual network and runs a collection of end-hosts,

switches, routers and links on a single Linux kernel. A light weight virtualization is used to make

a computer system e.g. laptop look like a complete network running the same kernel, system and

user code. Hosts in Mininet acts just like a real machine that can run programs and can even send

packets with the emulation of a real Ethernet interface. Some of the benefits of Mininet are speed,

ability to create custom topologies; packet forwarding customisation, easy to use by running

python scripts and it is open source [57], [58].

4.1.2 OpenvSwitch

OpenvSwitch is the most popular OpenFlow software switch for SDN. OpenvSwitch supports

standard management interfaces and is used as a virtual switch in VM environments. It supports

multiple Linux-based virtualizations such as Xen/Xen server, KVM, and VirtualBox.

OpenvSwitch is made up of many components some of which are listed below [50], [51]:

• ovs-vswitchd: This is a daemon which implements the switch, along with a companion

Linux kernel module for flow based switching.

www.manaraa.com

38

• ovsdb-server: This is a lightweight database server that ovs-vswitch queries to obtain the

stored configuration of the OpenvSwitch.

• ovs-vsctl: This is a tool used to query the switch to get the configuration and also to update

the configuration of ovs-vswitchd.

• ovs-appctl: This utility is used to send command to a running OpenvSwitch daemon.

• ovs-dpctl: This is a tool used for configuring the switch kernel module. It is used in the

administration of OpenvSwitch datapath.

• ovs-ofctl: This is the utility used for querying and controlling OpenFlow switches and

controllers.

OpenvSwitch will be used in the virtual network environment in conjunction with Mininet to create

a prototype network laboratory to be used for the research. OpenvSwitch version 2.3.1 will be used

for this research.

4.1.3 Controller Selection

Controllers are the brain of the network in an SDN environment. The choice for the right, simple,

available and open source SDN controller should be taken seriously to achieve a smooth research.

The list of available SDN controllers have already being mentioned in Chapter 2.

After comparing the list of available SDN controllers, RYU controller was chosen. SDN controller

comparison journal paper submitted was carefully examined and RYU controller fulfils most of

the requirement needed for this research [59].

4.1.4 Ryu Controller

Ryu is a Japanese word for flow. Ryu is a component based SDN controller. It has well defined

components that can be modified, extended and composed for creating network management

applications and customised controller applications. Ryu supports fully OpenFlow specification

1.0, 1.2, 1.3, and 1.4. Ryu was chosen for the following reasons [43].

• It is an open source

• It is implemented entirely in Python

• It is readily available

• It has a Long-Term Support (LTS)

• It is well documented

• It has GUI and REST API support

• Ryu fully supports all the OpenFlow specifications

• It also supports Openstack Quantum support used for cloud computing.

One of the most important choices of selection is that it uses Python which is easier and user

friendly than other programming languages.

www.manaraa.com

39

4.1.5 RYU Application Creation Model and Operation Methodology

Ryu application uses three creation and operation methodologies namely: threads, events and event

queues. Applications running on Ryu controllers are single-threaded entities and can be achieved

by creating a subclass, a subclass of ryu.base.app-manager.RyuApp. Ryu makes use of FIFO for

event queues; each Ryu application uses the FIFO for the preservation of the order of events which

is later used for the processing of the events which is done by de-queuing the event and process

the event with the help of event handler [60].

4.1.6 OpenFlow Event Classes

The event handler uses the ryu.controller.handle.set_ev_cls decorator to listen to specific events

generated whenever an OpenFlow message is received. The event class name used is

ryu.controller.ofp_event.EventOFP+<OpenFlow message name> e.g. For Packet-In message, the

OpenFlow message name is PacketIn so the event class name will become EventOFPPacketIn.

Ryu has a well-defined API and support REST. Its REST API can be used to update information

on the switch. The REST API uses ryu.app.ofctl_rest to retrieve switch statistics and to update it

as well [43] , [60].

4.1.7 Other Tools Used

List of other tools used in this research include the following:

• Iperf – Iperf is a command line tool used for measuring maximum bandwidth on IP

network. It supports TCP and UDP and measures their performance which includes

bandwidth and loss. For TCP, it can measure bandwidth and report MTU size while for

UDP it can measure packet loss, delay jitter and modification of UDP stream with specific

bandwidth usage [61].

• Netperf – It is a benchmark tool used to measure various networking performance by

providing test for unidirectional throughput and end-to-end latency using TCP or UDP

[62].

• cUrl – cUrl is a command line tool used to get files/documents from or send documents to

a server using any of the supported protocols. The supported protocols are HTTP, HTTPS,

FTP, GOPHER, and TELNET. It offers support for the use of proxy, user authentication,

ftp upload, HTTP post, SSL connection and file transfer resume. It is a simple url in

command form [63], [64].

• Wireshark – Wireshark is a network packet analyser that allows the user to see what is

happening on the network. It works by capturing network packets, displays the packet data

and then used to examine the details of communication on the network [65].

• Postman – Postman is GUI used to query network devices when developing API. It is used

for testing and easy readability of the rules and status of the switches and routers on the

network.

www.manaraa.com

40

Different experiments were set-up to achieve the aim of this research. The first experiment shows

the basic network set-up showing message communication on the network. Other experiments

needed are also conducted during this research.

4.2 Experiment 1: Basic Network Setup

A simple basic network is setup comprising a controller, a switch and two hosts. The topology of

the network is shown in figure 4.1

Figure 4.1: Basic network topology

To build the network, a terminal was used to execute the necessary commands. The first command

at the terminal creates the network using Mininet with the following command:

sudo mn –topo single,2 –mac –switch ovsk –controller remote –x

The details of the command parameter are as follows:

1. In Linux “sudo” is used to get root access

2. “mn” signify Mininet

3. “topo” is used for topology to define number of switch and host e.g. single,2 means one

switch and two hosts.

4. “mac” is used to automatically set the MAC address of the hosts

5. “switch” is used to signify the switch to be used e.g. either internal or remote

6. “x” is used to start xterm for each component created.

www.manaraa.com

41

Another keyword to take note of is datapath which represents network devices, for example, a

switch on the network, a single machine in the network may host many number of datapath. The

details of the setup after running Mininet can be seen in figure 4.2 below.

Figure 4.2: Basic network topology with details

Mininet created the network by adding the controller, switch and two hosts. It is shown that it is

unable to contact the remote controller at 127.0.0.1:6633, this is because the Ryu controller has

not yet been started. Terminals were created for the controller, switch, and the two hosts using

xterm. Issuing different OpenvSwitch commands produced the following results shown in the

attached figures. By issuing “ovs-vsctl show”, a brief overview of the database contents is shown

on the screen showing port s1-eth1 and s2-eth2 that links to the two hosts and the OpenvSwitch

version used which is 2.3.1.

Figure 4.3 shows the switch status and other commands which includes, the implementation of

OpenFlow specification 1.3.4 protocol on the switch, the command “ovs-vsctl set Bridge s1

protocols=OpenFlow13” after which “ovs-ofctl” was issued to check the status of the flow table.

This shows that the flow table is still empty and shows the version of the OpenFlow specification

used as well.

www.manaraa.com

42

Figure 4.3: switch status commands

Figure 4.4 shows the command to start the Ryu controller is then executed on the controller xterm

“controller:c0”. The Ryu controller learning switch has been bundled with the controller and can

be modified to perform more functions.

Figure 4.4: Inside Ryu Controller

By issuing “ovs-ofctl –O OpenFlow13 dump-flows s1” again to check the status of the flow table

produced the results show in figure 4.5

www.manaraa.com

43

Figure 4.5: OpenFlow table

It can be seen from switch terminal that the OpenFlow is using flow table number 0, and have 0

number of packet, priority of 0 and the actions is CONTROLLER. It also shows the updated flow

table with two flow entries for the communication of the two hosts. The first flow entry shows that

number of packets, the number of bytes, priority of 1, in_port which is port 2, destination MAC

address which is 00:00:00:00:00:00:00:01 and actions which specify the output of port 1. The

second flow entry also shows the same details as the first one but with different in_port which is

port 1, MAC address which is 00:00:00:00:00:00:00:02 and actions which is output on port 2.

Message Communication between a Switch and a Controller in OpenFlow Network

Figure 4.6 shows details of exchange of messages between the switch and the controller. The

switch establishes TCP handshake with the controller using loopback interface 127.0.0.1 and port

6633, while the switch is using port 52306. Both sides also exchange hello message by sending

highest OpenFlow protocol version. The controller then sends feature request message to the

switch and the switch respond with feature reply showing list of ports, port speed, available

OpenFlow tables, OpenFlow version in use, datapath ID, and number of buffer, capabilities and

actions. The controller then sends set-config message to the switch to set and query configuration

parameters in the switch. The controller also sends OFPT_MULTIPART_REQUEST,

OFPMP_PORT_DESC to the switch to obtain statistics or state information from the switch and

the switch also respond with details containing the port description showing number of used ports,

www.manaraa.com

44

port number, hardware address of the ports, name of the port, configuration state (i.e. if the port is

up or down), current speed, advertised speed, and supported speed.

Figure 4.6: Wireshark Flow analysis

The controller finally sends OFPT_FLOW_MOD to the switch to modify the flow table which

also contains the table ID, idle timeout, hard timeout, priority, buffer ID, out port, match,

instruction and action. If there is an error, an error message will also be sent to the controller.

Request messages are then sent frequently from the switch to the controller, while the controller

respond with echo reply messages to exchange more information about their connection status, to

keep the communication between them alive, to know the latency and the bandwidth between

them.

Message Communication between Hosts on an OpenFlow Network

To analyse the exchange of messages between hosts on an OpenFlow network, some tools will be

required to perform the task. Some of the tools required include Wireshark, iperf, cUrl, tcpdump

and inbuilt OpenvSwitch commands. Some of the targeted functionalities to be found out include

flooding, MAC address learning though the use of Address Resolution Protocol (ARP), forwarding

and OpenFlow table. The topology to be used is shown in figure 4.7 by using Mininet to generate

the network laboratory. The command “sudo –s” was first issued to get root access after which the

following command was then issued, “mn –topo single,3 –mac –controller remote –switch ovsk –

x” to create a controller, a switch and three hosts.

www.manaraa.com

45

The switch was enforced to only use OpenFlow specification 1.3 because OpenvSwitch started by

Mininet uses OpenFlow 1.0 by default. “ovs-vsctl show” was issued to query the status of the

switch and its database, “ovs-ofctl dump-flows s1” was also used to query the OpenFlow tables.

The Ryu controller was then started by running “ryu-manager –verbose ryu.app.

simple_switch_13” on the controller xterm window.

Figure 4.7: Message communication between Hosts

With the use of Wireshark, all network protocols on an OpenFlow network are encapsulated within

the OpenFlow protocol. The data section of the OpenFlow1.3 version used showed the data-link

layer which has the Ethernet with MAC address, others include IPv4, ICMP, ARP and others

depending on the specific protocol being looked for which can be easily accessed by filtering the

Wireshark display.

4.2.1 Result and Discussion

MAC Address Learning

After starting the network, the packets in the network were analysed to show details of information

on the switch and in the network. The features reply by the switch in response to the feature request

sent form the controller to the switch shows the switch datapath ID is 000000000000001 which is

shown as dpid after query the switch s1 with “ovs-ofctl -O OpenFlow13 show s1, it also shows the

capabilities of the switch such as flow stats, table stats, port stats and queue stats. This was

followed by port description and flow modification as explained in experiment 1. To know the

www.manaraa.com

46

MAC address of the hosts connected to the switch, Address Resolution Protocol (ARP) was used.

ARP is normally used for the mapping of the network address such as IPv4 to MAC address.

A ping command tool “h1 ping –c8 h3” was issued on the Mininet terminal. The ping tool send

ICMP packets from h1 to h2 and vice-versa, this was noted on the Wireshark as shown in figure

4.8. This also updates the flow table on the switch as well. MAC addresses learning starts when

host h1 send a broadcast out on the network asking the entire connected host that “who has 10.0.0.3

tell 10.0.0.1” as shown in figure 4.8 below. Pinging and ICMP messages were used to check the

connectivity and live-ness between two points.

Figure 4.8: Address Resolution Protocol

To know the MAC address of 10.0.0.3 with the use of ARP, the switch sends a “Packet_In” (which

is an ARP request) to the controller after receiving the broadcast to know what to do with the

packet. Host h3 using its MAC address responded with the message saying “10.0.0.3 is at

00:00:00:00:00:03”. It also sends another message to host h1 that “Who has 10.0.0.1? Tell

10.0.0.3”. Host h1 then responded by saying “10.0.0.1 is at 00:00:00:00:00:01”. Figure 4.9 shows

the Packet_In as the broadcast with the MAC address of the source and IP address of the

destination.

www.manaraa.com

47

Figure 4.9: OpenFlow Packet_In Message

Figure 4.10 shows how the controller answers the switch back with a “Packet_Out” message

instructing the switch to send the packet out to all ports excluding the source port which is port1

in this experiment, the switch will then wait for response.

Host h3 respond with another “Packet _In” message which is an ARP reply to the switch which

the switch also sends to the controller for forward decision making. Upon reception of the ARP

reply, the controller sends “FLOW_MOD” message to the switch to install new flow entry in the

flow table for present and future use. The figures below show the broadcast, Packet_In and

Packet_Out.

Host h1 then sends ICMP message to host h3 as shown in figure 4.12. The status of the switch

flow table was later checked with “ovs-ofctl – O OpenFlow13 dump-flows s1” as shown in figure

4.13. The flow table shows the priority of 0 for the message being sent to the controller while the

communication between hosts has the priority of 1. The flow table also shows the in_port which

is the receiving port on the switch and the destination port which is a MAC address of port1(host1)

and the actions specifying the forwarding of the packet out of port1. This process was repeated

from host1 to host2 with the ICMP messages. Additional information

www.manaraa.com

48

Figure 4.10: OpenFlow Packet_Out Message

Figure 4.11: OpenFlow Packet_In Message with destination IP and MAC address

www.manaraa.com

49

Figure 4.12: Host h1 ICMP message

Figure 4.13: Switch Flow table status

www.manaraa.com

50

Tcpdump command tool was also issued on the three hosts to crosscheck the result achieved using

Wireshark. Tcpdump displays the broadcast message received by the hosts excluding host h1, it

also displays the ARP and ICMP echo request and reply.

The flow table showing the flow entries and the matching conditions and actions is shown in table

4.1 below.

FLOW MATCHING CONDITION ACTION

1 in_port = 3

dl_dst = 00:00:00:00:00:01

output = 1

2 in_port = 1

dl_dst = 00:00:00:00:00:01

output = 3

Table 14.2: Flow table

4.2.2 TCP Throughput

Iperf is a throughput measurement tool used to test the maximum achievable bandwidth on the

network, quality of network link and latency between the hosts. The achieved results are shown in

figure 4.14 and figure 4.15 below with host h3 as the server and host h1 as the client.

Figure 4.14: TCP throughput with single connection

www.manaraa.com

51

Figure 4.15: TCP throughput with multiple connections

www.manaraa.com

52

Results and Discussion of the Throughput

To test the throughput, host h3 was made the server by invoking iperf –s command on its terminal

while host h1 was made the client with iperf –c 10.0.0.3 –P 1 –i 1 with –P 1 as option for single

connection to the server and –i 1 is used to display the transfer rate at an interval of 1 second for

the whole 10 seconds’ transfer.

Using figure 4.14, the result obtained by transferring 3.43GBytes within 10 seconds using all the

available bandwidth of 10GB was 2.95Gbits/sec. the bandwidth usage of 2.95Gbits/sec was

achieved out of the 10GB bandwidth available. Figure 4.15 shows the use of iperf in creating

multiple TCP connections to the server. The use of –P 10 tells host h1 to create 10 parallel TCP

connection to server host h3. The 10 parallel connections were created with different port number

with all connecting to port 5001 of the server. All the 10-parallel connections were shown with

different data transfer and bandwidth used. The sum of the total data transfer was 7.52 GBytes at

the rate of 6.41 Gbits/sec.

It can be deduced that parallel connection to the server has a higher data transfer and use higher

bandwidth, which is better than using a single connection. This shows that SDN with OpenFlow

can still perform the same functions the traditional applications (e.g. internet download manager)

are capable of by speeding up download rate and reduce downloading time.

4.2.3 UDP Throughput

A UDP throughput was also performed using the same network used in the TCP throughput. Host

h3 was also made the server while host h1 was made the client. UDP test results shown in figures

display the interval of 10 seconds, transferred data, bandwidth usage, and network jitter and packet

loss out of total number of packets. Using the results shown in figure 4.16 and figure 4.17, the use

of 1M, 10M and 100M perform very well with no loss and very little network jitter while 1G and

10G has some packet loss with 1G having just 0.083% and 10G having a higher 0.27%.

www.manaraa.com

53

Figure 4.16: UDP throughput server result

The experiment has shown that SDN with the use of OpenFlow protocol can function more like

the traditional network and can even be easier to tweak for higher performance. It also shows that

networking tools that are used by network and system administrator can also perform well within

SDN environment.

www.manaraa.com

54

Figure 4.17: UDP throughput client result

www.manaraa.com

55

4.3 Experiment 2: VLAN in SDN

VLAN is used to bread to break broadcast domain in the network by creating a smaller broadcast

domain within the network. It is also used to group hosts with similar functions. As explained in

section 2.3.1, VLAN can be used to break domains in the building to separate different departments

in this same building. For instance, finance department and administration department staffs in the

same building can be separated with the use of VLAN. VLAN uses 802.1Q for the tagging of the

packets in the VLAN network. This tagging or identifier is used in recognizing each packet in the

network and is also used in forwarding packet to desired destination. This experiment

demonstrates a testbed with 1 controller, 5 switches and 16 hosts. The testbed is created using a

tree topology as shown in figure 4.18.

Ryu Controller

s1

s2 s3 s4 s5

h1

h2 h12

h13

h14

h3

h4

h5

h6

h7

h8

h9

h10

h11 h15

h16

Figure 4.18: VLAN Topology

Figure 4.19 shows the Command Line Interface (CLI) of the creation of the testbed. The testbed

uses tree topology and consists of five switches. Switch s1 is the central switch that connect all the

remaining four switches together, namely s2, s3, s4 and s5 together. Unlike traditional tree

topology that it is the sole responsibility of the core switch to forward packet to respective

destination, switch s1 is also responsible for packet forwarding from one switch to the other but

the remaining four switches are also connected to the controller. Though the connection to

controller does not determine the packet forwarding but helps in decision making. The controller

remains the brain of the network which is responsible for decision regarding packet forwarding,

other functions include forwarding out packet to respective output port, send to controller for

decision, or dropping the packet.

www.manaraa.com

56

Figure 4.19: Tree topology testbed creation

After the Mininet start-up, the Ryu router application is started with ofctl_rest which makes REST

and API integration possible [66]. This is shown in figure 4.20. The ofctl_rest is started with the

router application for easier querying with browser or Postman. Postman is used to display the

query of the JSON in a better readable format [67]. The IP addresses of the routers and hosts and

other information used are shown in the table 14.2.

Host IP Address VLANs Default

Gateway

Switch Switch IP

address

Switch

Port

 S1 172.16.10.1

H1 192.168.100.10 10 192.168.100.1 S2 172.16.10.2 S2-eth1

H2 192.168.100.11 10 192.168.100.1 S2 172.16.10.2 S2-eth2

H3 192.168.100.12 100 192.168.100.1 S2 172.16.10.2 S2-eth3

H4 192.168.100.13 200 192.168.100.1 S2 172.16.10.2 S2-eth4

H5 192.168.200.10 10 192.168.200.1 S3 172.16.10.3 S3-eth1

H6 192.168.200.11 100 192.168.200.1 S3 172.16.10.3 S3-eth2

H7 192.168.200.12 100 192.168.200.1 S3 172.16.10.3 S3-eth3

H8 192.168.200.13 200 192.168.200.1 S3 172.16.10.3 S3-eth4

H9 192.168.10.10 10 192.168.10.1 S4 172.16.10.4 S4-eth1

H10 192.168.10.11 100 192.168.10.1 S4 172.16.10.4 S4-eth2

H11 192.168.10.12 200 192.168.10.1 S4 172.16.10.4 S4-eth3

H12 192.168.10.13 200 192.168.10.1 S4 172.16.10.4 S4-eth4

H13 192.168.20.10 10 192.168.20.1 S5 172.16.10.5 S5-eth1

H14 192.168.20.11 100 192.168.20.1 S5 172.16.10.5 S5-eth2

H15 192.168.20.12 200 192.168.20.1 S5 172.16.10.5 S5-eth3

H16 192.168.20.13 10 192.168.20.1 S5 172.16.10.5 S5-eth4

Table 14.2: VLAN IP address allocation

www.manaraa.com

57

This table also shows the VLANs allocation of to each host on the network and the corresponding

gateway and default route used by networking devices and hosts on the network.

Figure 4.20: Ryu router application start-up

Figure 4.21 shows some of the configuration of the switches on the network. cUrl is used in the

command line with POST to input the information required on the switches. The result is displayed

on the CLI immediately after the execution of the POST command using cUrl. The switches

configuration figure shows the switch_id, the vlan_id, and the address_id of the switch being

configured in the network.

www.manaraa.com

58

Figure 4.21: Switches address configuration

Each host on the network is also configured with the default route, this is a must for the hosts on

the switches can be queried with the result viewed in JSON format using POSTMAN [67].

POSTMAN makes the visualizing of the configuration data including flow entry to be more user

friendly and easily readable. Using GET command on the POSTMAN to query the status of a

networking device or all device on the network. Issuing the GET command to view the status of

all devices after the configuration of IP addresses to all the devices using this command:

http://localhost:8080/router/all/all gives the following;

[

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

http://localhost:8080/router/all/all

www.manaraa.com

59

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

 }

],

 "switch_id": "0000000000000001"

 },

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.100.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.2/24"

 }

]

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.100.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.2/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.100.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.2/24"

 }

]

www.manaraa.com

60

 }

],

 "switch_id": "0000000000000002"

 },

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.200.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.3/24"

 }

]

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.200.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.3/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.200.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.3/24"

 }

]

 }

],

 "switch_id": "0000000000000003"

 },

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.10.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.4/24"

 }

www.manaraa.com

61

]

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.10.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.4/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.10.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.4/24"

 }

]

 }

],

 "switch_id": "0000000000000004"

 },

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.20.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.5/24"

 }

]

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "192.168.20.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.5/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

www.manaraa.com

62

 {

 "address_id": 1,

 "address": "192.168.20.1/24"

 },

 {

 "address_id": 2,

 "address": "172.16.10.5/24"

 }

]

 }

],

 "switch_id": "0000000000000005"

 }

]

The three VLANs created are VLAN 10, VLAN 100, and VLAN 200. From table 4.2, each host

on the switches are allocated into specific VLAN. The status shows the addresses on all the devices

with respective VLAN allocations. To get status of each device, the switch_id or dpid of the device

must be specified and the VLAN_id can also be specified as well to get data of interest. The data

from switch s1 with VLAN 10 is shown below by using the command:

http://localhost:8080/router/0000000000000001/10 .

[

 {

 "internal_network": [

 {},

 {

 "vlan_id": 200,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

 },

 {

 "vlan_id": 10,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

 },

 {

 "vlan_id": 100,

 "address": [

 {

 "address_id": 1,

 "address": "172.16.10.1/24"

 }

]

 }

],

 "switch_id": "0000000000000001"

 },

]

http://localhost:8080/router/0000000000000001/10

www.manaraa.com

63

Pinging between hosts on the same VLAN on the same switch is successful while pinging between

hosts on different VLAN on the same switch is not possible. Before the configuration of default

route on the hosts, pinging between hosts on the same VLAN located on different switches is not

successful. This can be seen in figure 4.22. Inter-switch routing is possible after the configuration

of default route on the host and configuration of IP addresses with default route and static route

with respective destination network addresses on the switches. Figure 4.23 shows successful

communication between host h1 on VLAN 10 located on switch s1 and host h5 on VLAN 10

located on switch s2.

Figure 4.22: Result of failed inter-switch connection

www.manaraa.com

64

Deleting the default route on switch s1 will make the communication between the hosts on switch

s1 and switch s2 to be unsuccessful. By examining the three inter-switch results in figure 4.23,

4.24, 4.25 and 4.26 the results show that the broadcast sent is asking for the default gateway and

not the destination network address. This is because the default gateway knows the address of the

inter-connected address and knows how to forward the packet in line with feedback from the

controller. Before any packet can leave the switch the need to know the route and switch s1 is the

core switch responsible for forwarding of all the inter-switch packet in the network. Even though

all the switches are configured with addresses, an ARP message is still sent to locate the default

gateway address of the switch from which the packet is being sent. Once this is done, the core

switch s1 will then perform the remaining operation by forwarding the received packet from one

switch to the other.

Figure 4.23: Successful VLAN inters-switch communication

www.manaraa.com

65

Figure 4.24: Successful communication between host h1(on s1) and h13 (on s5) with VLAN 10

Figure 4.25: Successful communication between host h10 (on s4) and h14 (on s5) with VLAN100

www.manaraa.com

66

Figure 4.26: Successful communication between host h12 (on s4) and h4 (on s1) with VLAN 200

4.4 Conclusion

The experiment shows the use and functionality of VLAN in SDN by testing its use in a tree

topology testbed. The results show VLAN communication within a certain VLAN for example

communication on VLAN 10 on switch s1 is possible while it also shows that inter-switch VLAN

communication is also possible within all the four switches s2, s3, s4, and s5. We also found out

that broadcast ARP message sent out for inter-switch VLAN communication is directed to the

default gateway of the packet origin. This is used by the source host address to know the route to

send the packet out of. The default gateway replied the message with its MAC address and the

packets are then forwarded out. Subsequent communications between the hosts on the network

residing in the same VLAN are then transmitted without any delay.

www.manaraa.com

67

5. FIREWALL AND QoS IN SDN

5.1 Firewall
Firewall is a network security system used to monitor and control access to a network environment

[68]. A firewall may either be a dedicated hardware or software, and it is primarily used in an

organisation to secure and to prevent unauthorised access to the network based on predetermined

security rules [68], [69], [70]. It controls traffic flowing in and out of a network by granting or

denying permission to packets flowing in the network [71]. The rules or policies set up for a

firewall may include parameters such as IP address, MAC address, port or protocol. Permission

within a network or between two networks is only given to a packet that matches information in

the Access Control Lists (ACL). The firewall serves as a security barrier by protecting the network

resources from unwanted access or illegal visitors.

Firewall is mostly used on the network to secure traffic flowing in and out of the network. To

implement firewall in SDN, OpenFlow protocol is used and enabled on both the Ryu controller

and the associated network devices in the network. In this experiment, the Ryu firewall application

is used and uses the OpenFlow protocol to manipulate the forwarding table of the networking

devices which is also referred to as datapath by remotely inserting, modifying or deleting flow

entries on the flow table residing in each device [72], [48]. Flows can be added to the flow table

either proactively or reactively. In this experiment, the flows were added to the flow table

proactively. This means the flow entries are added to the flow table before the arrival of the

packets. The flow entries added contain information to be used by the switch for forwarding. The

forwarding decision is made based on the result of the matching. The flow entries consist of fields

that are matched with incoming packets and the associated actions with each match are executed.

This process is done by analysing the packet header of the incoming packet against the flow entries

which are installed in the flow table. Packets are forwarded when a match is otherwise it may be

dropped or forwarded to the controller for further processing.

The experiments includes the ability to add, modify and delete rules to be utilised in the firewall

and uses one OpenvSwitch [51] and eight hosts in conjunction with the Ryu controller [43], [66].

In addition, we also discussed the implementation of a firewall at layer 2, layer 3 and layer 4 of

the OSI model. In achieving the objective of this paper, some of the match fields utilised in our

experiments and the network layer at which they are applicable are listed in table 5.1.

Match Fields Layer

TCP, UDP, ICMP Transport layer 4

IPv4, ARP Network layer 3

MAC address Data Link layer 2

Table 5.1: Match Fields

www.manaraa.com

68

Different scenarios were tested and documented. The flow entries entered contain firewall rules in

the form of Access Control Lists (ACLs). The experiment also explores the implementation of

firewall in SDN at layer 2, layer 3 and layer 4. The scenario investigated will include the following

functionalities of firewall in SDN:

• Allowing or blocking ICMP traffic

• Allowing ICMP traffic while blocking HTTP

• Blocking certain hosts from accessing a web server

• Blocking or allowing hosts to communicate based on source or destination IP address.

The network topology used is shown in figure 5 and consists of 1 controller, 1 OpenFlow switch

(OpenvSwitch) and 8 hosts and is created with Mininet using the following command:

sudo mn –topo single,8 –mac –switch ovsk – controller remote -x

Ryu Controller

Host h2Host h1

Host h4
Web server

Host h3

Host h6
Untrusted host

Host h5

Switch s1

Host h8Host h7

Figure 5: Topology setup

www.manaraa.com

69

Switch s1 is set to use OpenFlow 1.3 specification using this command: ovs-vsctl set Bridge

s1 protocols=OpenFlow13. The following command is also issued to start the firewall

application: ryu-manager ryu.app.rest_firewall ryu.app.ofctl_rest. The ofctl_rest

application started with the firewall allows easy management and viewing of the network and

device configurations in JSON format using POSTMAN. POSTMAN is used for easy readability

of the rules and status of the switches on the network. The configured firewall is enabled on the

switch using: curl -X PUT http://localhost:8080/firewall/ module/enable/0000000000000001. The state of the

switch is obtained through Postman, using: http://localhost:8080/firewall/module/status

Four scenarios are used to test the functionality of SDN. The first three scenarios make use of the

topology shown in figure 5. with single switch while the fourth scenario uses 4 switches with 4

VLANs to demonstrate real scenario like a University campus with building that has different

departmental functions (e.g Administration, finance, security)

5.1.1 Scenario 1

The first aspect of the experiments investigates the operation of the firewall at layer 2 using the

MAC address of hosts. The rules setup first allows the hosts to ping each other. This is achieved

by specifying a flow entry to allow communication from host h1 to h2 and vice versa by specifying

their MAC addresses in the sourceMAC and destinationMAC using the following command

format.

curl -X POST -d ‘{“dl_src”: “sourceMAC”, “dl_dst”: “destinationMAC”, “nw_proto”: “ICMP”,

“actions”: “ALLOW”, “priority”: “200”}’

http://localhost:8080/firewall/rules/0000000000000001

This rules specifies that communication from the specified source MAC address to the specified

destination MAC address should be allowed, with a given priority value when the ICMP protocol

is used. The rules were then updated to disallow communication between the two hosts. This is

also achieved by specifying a new flow entry to disallow communication from h1 to h2 and vice

versa using the command formats:

• curl -X POST -d ‘{“dl_src”: “sourceMAC”, “dl_dst”: “destinationMAC”, “nw_proto”:

“ICMP”, “actions”: “DENY”, “priority”: “201”}’

http://localhost:8080/firewall/rules/0000000000000001

To ensure that the new rules take precedence over the previous rule, a higher priority value is given

to the new flow entries to disallow communication between the two hosts. This is confirmed by

pinging both hosts, which shows that they were unreachable from each other.

5.1.2 Scenario 2

Firewall rules used in this experiment is based on layer 3 IP address and layer 4 protocols. Firewall

rules were added to allowing pinging using the ICMP messages between host h1 and host h2. The

network source address and the destination address is used while permission is given to allow

http://localhost:8080/firewall/%20module/enable/0000000000000001
http://localhost:8080/firewall/module/status
http://localhost:8080/firewall/rules/0000000000000001
http://localhost:8080/firewall/rules/0000000000000001

www.manaraa.com

70

ICMP network protocol communication between the two hosts. The format for the command used

is as follows:

curl -X POST -d ‘{“nw_src”: “sourceIP”, “nw_dst”: “destinationIP”, “nw_proto”: “ICMP”,

“actions”: “ALLOW”, “priority”: “205”}’

http://localhost:8080/firewall/rules/0000000000000001

Two commands are entered with source and destination IP address and then interchanged the

source with destination address on the second command. Priority number is also increased to

overwrite the existing rule used in the earlier experiment. Figure 5.1 shows the ARP and the ICMP

requests and response as the packets flow through the network after executing ten ping requests.

Even though the flow entry has already been proactively added to the flow table earlier before, a

broadcast is still sent using the Address Resolution Protocol (ARP) followed by response from the

concerned host. The use of proactive flow entry makes the ARP response to be faster than reactive

flow entry as seen on the pinging results. It is also seen that new ARP message is sent after the

fifth reply message is sent after the fifth reply message, but after analysing the packet, we discover

that these ARP message does not consume bandwidth. This message serves as a keep live message

sent by host h2 to host h1to confirm if host h1 is still communicating.

Figure 5.1: ARP and ICMP messages

5.1.3 Scenario 3

In this experiment, host h4 was made a web server using command “python -m SimpleHTTPServer

80 &”. All hosts in the network are granted permission to access the web server except for host

h6. Layer 3 IP address and layer 4 protocols were used with a higher priority number in the firewall

rules.

The first command below shows that access was granted to all host on the network after which the

second command is then issued to deny host h6 from accessing the webserver. This is done by

http://localhost:8080/firewall/rules/0000000000000001

www.manaraa.com

71

specifying the source IP address, destination IP address, port number, network protocol and

associated action to be taken.

a) curl -X POST -d ‘{“nw_src”: “192.168.10.0/24”, “nw_dst”: “192.168.10.0/24”,
“nw_proto”: “ICMP”, “actions”: “ALLOW”, “priority”: “205”}’

http://localhost:8080/firewall/rules/0000000000000001

b) curl -X POST -d ‘{“nw_src”: “192.168.10.6/32”, “nw_dst”: “192.168.10.4/32”,
“nw_proto”: “TCP”, “tp_dst”: “80”, “actions”: “DENY”, “priority”: “206”}’

http://localhost:8080/firewall/rules/0000000000000001

Host h5 and h6 were picked to access the web server. Host h5 sucessfully connect and retrieved

information from the web server residing on host h4. Host h6, on the other hand, could not secure

a connection to the web server. This can be seen in figure 5.2 as the host is only displaying

connecting for a long time and retrying again after an unsucessful connection. It can also be seen

that firewall is functioning very well in SDN, this is confirmed on the controller terminal. The

controller terminal shows that the host and packets are blocked.

The second command grant pinging access is to host h5 and host h6. This enable both hosts to be

able to ping the web server. Pinging is not possible between the two hosts to the web server before,

this is because there is no rule to allow the pinging. Pinging between host h5 and host h6 is then

blocked while that of host h6 remains, this is done by either deleting the “rule_id” or by adding

another rule with a higher priority number. This still allows host h5 to access the web server but

not being able to ping the web server while host h6 can still ping but does not have access to any

information on the web server.

From all the experiments in the three scenarios, it is seen that firewall in SDN can function more

like firewall used in traditional network. It can be used to secure the network by blocking access

to the web server from specific IP address or group of IP address. It can also be used to secure

intranet where permission is only granted to specific host in the network. Even though SDN is still

in early stage, firewall can still be implemented and can funciton effectively in an SDN

environment. The use of firewall application in SDN can save some amount on Capital

Expenditure (CapEx) incurred on the purchasing of firewall equipment.

http://localhost:8080/firewall/rules/0000000000000001
http://localhost:8080/firewall/rules/0000000000000001

www.manaraa.com

72

Figure 5.2: Firewall confirmation

All host have access to the web server; figure 5.2 shows that host h5 still have access to the web

server while host h6 did not have access but can ping the server. Another rule was then added to

block the pinging from host h6 to the web server.

Pinging access from host h6 to the web server was later denied by deleting the rule_id from the

firewall rule using the following command:

curl -X DELETE -d ‘{“rule_id”: “5”}’

http://localhost:8080/firewall/rules/0000000000000001. Deleting the rule_id then gives host

h6 pinging access back, but it did not have access to the web server.

5.1.4 LATENCY AND THROUGHPUT

Latency in networking can be seen as the time taken for a packet to travel from a source to a

destination and back [73]. It is mostly measured using the ping tool. We measured latency without

the introduction of firewall and with the firewall runnig on the network. the result achieved is then

plotted into a graph and shown in figure 5.3. From the result, it is seen that firewall introduces

minimal overhead compared to a network without firewall. From the analysis the network using

wireshark, it is seen that a unicast ARP message is sent from host h2 to host h1 asking for the

http://localhost:8080/firewall/rules/0000000000000001

www.manaraa.com

73

owner of 192.168.10.1 and host h1 also reply back. This unicast message does not consume any

bandwidth and therefore does not create additional overheads on the network but have a lower

latency at the sixth sent packet. Even though both latency have their flow entries installed

proactively, the firewall still has a little more latency than the network without firewall. The

latency without firewall has an average of 0.138ms while the average latency with firewall is

0.155ms. This little difference can be ignored in a network environment. The latency results shows

that firewall implementation in SDN is functioning very well without affecting the quality of the

network.

Figure 5.3: Network Latency

Throughput is measurement of data transfer rate from one location to the other over a given amount

of time [74]. Network throughput is measurement of maximum achievable bandwidth on a

network. This can be measure as maximum achievable data transfer rate from one host to the other

over a specified period of time.

In other to test for the throughput, one host is made a server while others a client. We run the test

for different number of times. The throuput with firewall and without firewall are plotted on the

graph as shown in figure 5.4. The result shows that throuput without firewall is slightyly higher

than without firewall. The resulted average of throughput without firewall is 65.1Mbps out of the

100 Mbps while the one with firewall is 59.9Mbps which is still acceptable.

5.1.5 Conclusion

In testing the functionality of firewall in SDN environement, this paper shows that the objectives

were achieved. This includes the use of firewall in securing the network by blocking untrusted host

or allowing trusted ones using ICMP, TCP, HTTP protocols. We were able to measure the latency

and the throughput in the network with firewall in place and without firewall. The firewall should

be put in place to block any attack within the network or from outside the network. We were able

to perform different experiments using Mininet, Openvswitch and Ryu controller to setup the

network toplogy to achieve the aim of this paper. The firewall used in this paper functions by

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 1 0 1 2

TI
M

E
(M

S)

NUMBER OF PACKETS SENT

LATENCY

Latency without firewall
Latency with firewall

www.manaraa.com

74

focusing on the packet header of flows in the network rather than the data. The firewall operates

from layer 2 to layer 4 on the OSI model for matching of packet header against the firewall rules.

Figure 5.4: Network Throughput

Packet filtering technology firewall was used and rules were added proactively to achieve the goal

of this paper. The results acquired shows that sources and destination not listed in the policy are

blocked while those listed and matched with the packet header are granted permission based on

the associated actions attached. Some of our key findings include the ability to use SDN firewall

to secure the network by granting permission or deny access to network services. Considering

latency and throughput, we conclude that SDN firewall implementation only has minimal

overheads compared to SDN network without firewall. The use of firewall in an SDN environment

will reduce the capital expenditure incurred in purchasing firewall hardware in organisations. The

limitation of this experiment is that it is only tested using one controller, the use of multiple

controllers may increase overheads on the network and there is also security concerns regarding

the connection of multiple controllers to switches on the network. This security concern can be

recommended for future work to check security issues that may affect secured connection between

Ryu controllers and the switches. Another future work is to test the functions of the firewall using

application layer 7 on proxy server by using proxy technology.

5.2 QoS in SDN

Quality of Service (QoS) in networking is a way of managing the network resources effectively.

QoS has been widely used in traditional network and can also be implemented in Software Defined

Network (SDN). QoS in SDN can be used to control the network bandwidth, latency and

throughput. QoS works by giving higher priority to some packets over others. Taking real-time

video streaming as an example, this is a delay sensitive data and its packets are usually treated

with higher priority.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

M
ax

im
u

m
 t

ra
n

sf
er

 r
at

e
(m

s)

Number of seconds (s)

Throughput

Throughput without firewall (Mbps)

Throughput with firewall (Mbps)

www.manaraa.com

75

Ryu Controller

Switch s1

Host h2Host h1

Figure 5.5: QoS topology

5.2.1 QoS Implementation in SDN

As in traditional network, QoS can also be implemented in SDN. SDN makes use of OpenFlow

protocol and OpenvSwitch (OVS) for the implementation. OVS support Linux traffic control (tc)

which it uses for rate limiting. It also uses Linux queueing disciplines (qdisc) for bandwidth

management and Hierarchical Token Bucket (HTB). HTB helps in controlling outbound

bandwidth on a given link. When QoS is implemented, HTB ensures each queue in the QoS

settings has a number of resources allocated to them [75].

The two major ways of using QoS with OVS in SDN is by Policing and Shaping. OVS support

traffic shaping for traffic that egress from a switch. The traffic can be in form of DSCP values

allocated to each queue on the QoS. OVS also supports policing for traffic that ingresses into the

switch. In summary, SDN makes use of OVS to implement QoS by policing which is based on

per-interface ingress rate-limiting using qdisc or by shaping which is based on queues and

priority on the network link using HTB [76].

5.2.2 QoS Toolset

The QoS toolset consists of classification tools, marking tools, policing tools and shaping tools. A

brief explanation of each toolset category is given below [77]:

www.manaraa.com

76

1. Classification is the terminology used for flow analysis to determine the traffic class that

the flow belongs to and makes decision based on the result of the analysis. The decision to

be made is called marking.

2. Marking is done after flows have been analysed, the packets are then marked at the ingress

edge router in the network.

3. Policing is the action of dropping packet whenever the allocated network resources have

been exceeded.

4. Shaping involves slowing down traffic on the network to maximise the use of the allocated

network resources. Unlike policing, shaping will slow down the packet transmission or

reception instead of dropping the packet. The slowing down of traffic is done mostly by

queueing up packets and then forward them as at when due.

5.2.3 Experimental Setup and Methodology

To test the functionality of QoS in SDN, we set up a testbed using Mininet [58] installed on Virtual

Machine, Ryu controller [43], OpenvSwitch [50] and two Virtual Machine installed on VirtualBox.

The QoS performance is tested using Policing and Shaping techniques. Four scenarios are tested to

explore different functions of Qos and its performance in SDN. The QoS application used is based

on Ryu controller while the Mininet source code was modified to accommodate performance

monitoring with sflow. This modification makes it easier to monitor the flow of traffic using sflow

[78].

The first scenario makes use of Mininet to create a testbed with two hosts [57], [58]. QoS is

implemented using traffic policing on the switch connected to the hosts. The second scenario also

makes use of Mininet and the QoS is implemented on the network with per-flow traffic shaping.

This limits the rate of traffic flow on the interfaces configured on the switch in respect to each flow

on the port. Mininet is also used for the third scenario while the QoS is implemented using traffic

shaping with queues created on the QoS list. The last scenario uses two VMs to implement traffic

shaping using video streaming. The performance of the QoS is checked with the use of queues in

the traffic shaping techniques. For all the scenarios, flow entries were entered into the flow table

residing on the switch. These flow entries contains the QoS policies such as source and destination

IP address, source and destination post numbers, DSCP values and priority. We shall investigate

the following in this paper:

• Packet dropping

• Per-interface bandwidth management

• Traffic shaping and scheduling

• Traffic monitoring with sflow

• Measurement of throughput in the network

The experiments in scenario 1-3 were carried out on a virtual machine (VM) running Ubuntu 16.04

LTS and installed on Oracle Virtual Box with an Intel Core i5 quad core and 16GB of RAM host.

Applications including Mininet, Ryu controller, OpenvSwitch, Video Lan Client (VLC), iperf,

www.manaraa.com

77

Wireshark, Postman and sflow were installed on the Ubuntu VM. The fourth scenario includes the

use of two VMs running inside VirtualBox and has 3GB RAM each.

Mininet is a Linux application that uses the real Linux Kernel to create a realistic virtual network

of hosts, links and switches on a single machine which may be VM or cloud host. Ryu controller

is written in Python programming language and provides a well defined API that makes

customisation, control and management easy. OpenvSwitch is multilayer virtual switch that has

been designed to support standard management interfaces and protocols such as sflow, Netflow

and CLI. It can also be used to enable network automation through programmatic extension and it

can be used in multiple physical servers, multiple Linux-based virtualization technologies such as

Xen, KVM and VirtualBox. Iperf is a command line tool used for measuring the maximum

achievable bandwidth on a network.

Wireshark is a network protocol and packet analyser used to examine details of communication on

the network [65]. sflow is a short form for sampled flow and it is a network technology standard

used for monitoring, to enhance network performance and to visualize the network. Postman is

also installed to get a coordinated response from the switch instead of getting the results through

curl. sFlow is a multi-vendor monitoring technology embedded within switches and routers used

to monitor traffic flows at wire speed on network devices interfaces simultaneous [78]. VLC is a

free and open source cross-platform multimedia player and streamer. It has support for different

protocols such as RTP, HTTP, RSTP and UDP [79].

The network topology used in all the scenarios consist of Ryu controller [43], [66], OpenvSwitch

and 2 hosts. The OpenvSwitch is set to use OpenFlow specification 1.3 [55] using the command:

ovs-vsctl set Bridge s1 protocols = OpenFlow13. We also set the OpenvSwitch

to listen on port 6632 for OVSDB access by using the following command: ovs-vsctl set-

manager ptcp:6632

5.2.4 Scenario 1

The first experiment comprises two hosts created with Mininet as shown in figure 5.2. QoS

functionality is investigated on the network with the use of traffic policing on the ports on the

switch. The Ryu QoS app is also started as well. Qos rules are setup to limit the rate of the

transmission on the interfaces by setting the ingress policing rate and ingress policing burst using

the following command: ovs-vsctl set interface s1-eth0 ingress_policing_rate=10000

Ovs-vsctl set interface s1-eth0 ingress_policing_burst=1000

The interface is set to 10Mbps and it is expected to drop excess traffic. Iperf is then used to check

the throughput and to confirm the QoS on the interface. We make host h1 the server and host h2

the client. It is found out that excess traffic above 10Mbps are dropped when traffic passes from

host h2 to host h1. Even though per-interface traffic is good and can be used on the network to

limit amount of resources that users are using on the network. It is not considered effective in a

www.manaraa.com

78

situation where services and applications are needed to be segregated. Per-interface is best used

with other QoS techniques to manage resources on the network and give better performance.

5.2.5 Scenario 2

Unlike per-interface policing that use QoS rules on each interface, this experiment uses per-flow

QoS Policies on the interface. The advantage of per-flow QoS is the fact that the interface will not

only be limited to a specific bandwidth but instead, known applications or services can be assigned

a bandwidth using IntServ classification. In this scenario, three queues are created on the QoS and

configured on the interface. The flow entry is then installed on the switch by matching the network

destination address and network protocol to the specific port number followed with an action of

assigning the queue. The format for the command used is as follows:

curl -X POST -d ‘{“nw_src”: “sourceIP”, “nw_dst”: “destinationIP”, “nw_proto”: “ICMP”,

“actions”: “ALLOW”, “priority”: “priority number”}’

http://localhost:8080/firewall/rules/0000000000000001

From the attached diagram in figure 5.6, it is seen that the QoS functions very well, as seen by the

two queues created. The queue q0 is the default which is only able to use 500kbps bandwidth while

q1 is configured to use 1Mbps.

Figure 5.6: Per-interface policing

By analysing with the throughput result it is also seen that excessive packets are queued when the

buffer becomes full and are later transmitted when it is not full again. However, shaping is not

meant to drop packets, there are situations where some packets are dropped due to too much excess

packets that make the buffer to be full without enough bandwidth to pass the first packet in the

queue. The attached figure 5.6 used to display the throughput graph is sflow which is used to

monitor and manage the network. The sflow also confirms that QoS is effectively maintained and

monitored and displays the interface being used and the associated port number.

http://localhost:8080/firewall/rules/0000000000000001

www.manaraa.com

79

5.2.6 Scenario 3

In this experiment, the QoS is created using DiffServ. DiffServ uses per-aggregate instead of per-

flow in Scenario 2. Per-flow QoS used in scenario 2 is effective but will result in having list of

flow entries to be entered onto the switch in a situation where there are many devices on the

network and where the bandwidth also increases and this leads to complexity. DiffServ is scalable

and can make network QoS configuration easier. It makes use of the edge router to be used as the

base router to have the QoS configured, the edge router then feed other connected router with the

QoS settings needed. The two routers are configured with IP addresses and gateway after which

default routes for the hosts are also configured.

Figure 5.7: DiffServ QoS

The installed QoS in this experiment uses DSCP for marking the queues, that is each DSCP value

is matched with a queue and entered as a flow entry on router s1. Four queues are entered using

DSCP chart as shown in table 1 which is provided by Cisco mostly used by organizations. Table

1 shows the maximum and the minimum bandwidth rate, the DSCP values, QoS ID and Queue ID.

The settings for the edge router s2 is also shown in Table 2 and it includes the network destination

address, network destination port number, network protocol, DSCP value and queue ID.

Table 2: QoS List with DSCP values

QoS

ID

Queue

ID

Maximum

bandwidth

Minimum

bandwidth

DSCP

value

Codes

0 0 10Mbps -

1 1 10Mbps 1.5Mbps 26 AF43

2 2 10Mbps 4Mbps 40 CS5

3 3 10Mbps 3.5Mbps 46 EF

www.manaraa.com

80

Table 3: Queues settings with DSCP values

Ntw. Dst Address Ntw. Dst Port No Ntw Protocol DSCP value Queue ID

192.168.10.10 5001 UDP 0 0

192.168.10.10 5002 UDP 26 1

192.168.10.10 5003 UDP 40 2

192.168.10.10 5004 UDP 46 3

The use of DiffServ classification makes the QoS on the network to be scalable. The router s1

matches the DSCP values with the associated queues while the marking of the DSCP values to the

network destination address and destination port number is done on edge s2. Figure 5.7 shows the

monitoring of the ports using sflow to show how the packets are transferred, the port number used

and the confirmation of the QoS queues with the use of DiffServ. The command to configure and

match the DSCP values are written below:

a) curl -X POST -d '{"match": {"ip_dscp": "DSCP value"}, "actions":{"queue": "queue
ID"}}' http://localhost:8080/qos/rules/0000000000000001

b) curl -X POST -d '{"match": {"nw_dst": "IP address", "nw_proto": "UDP", "tp_dst":
"dst port number"}, "actions":{"mark": "DSCP value"}}'

http://localhost:8080/qos/rules/0000000000000002

The queues created are in line with the standard used by CISCO as seen from the chart and used

in this experiment to replicate a real organizational scenario. The bandwidth usage is shown in

figure 5.7 which confirms that the allocated ports are not used more than the assigned bandwidth

marked with DSCP values. The figure also shows the bandwidth usage of each allocated ports that

are assigned to the specific queue and DSCP values. It is also seen that the first queue q0 which is

known as best effort has a limited bandwidth usage while other queues are in use. This shows the

functionality of the QoS by giving priority to queues with DSCP in line with the assigned

bandwidth to manage the network resources effectively.

5.2.7 Scenario 4

In this scenario, two virtual machines (VMs) were used to implement the traffic shaping or

scheduling on the network. Video streaming performance is checked by making use of the QoS

application in Ryu controller. This experiment use the per-flow method used in scenario 2. On the

host computer, we created a bridge named “engr” after which it was turned on and the host eth0

was shutdown. The following command shows the detailed steps taken:

• ovs-vsctl add-br engr

• ifconfig engr up

• ifconfig eth0 0

• dhclient -v engr

• ip tuntap add mode tap vport1

• ip tuntap add mode tap vport2

• ifconfig vport1 up

• ifconfig vport2 up

www.manaraa.com

81

• ovs-vsctl add-port engr vport1

• ovs-vsctl add-port engr vport2

• ovs-vsctl set Bridge engr protocols=OpenFlow13

The two virtual ports vport1 and vport2 created are then attached on the VirtualBox network

interface to the two VMs before starting them. To get a better performance, we use the traffic

policing used in scenario 1 with per-flow traffic shaping. The traffic policing was used to limit the

traffic to 10Mbps on vport1 and vport2. This means the two port will only allow 10Mbps traffic

on the ports and excess traffic will be dropped. Before starting the Ryu controller, we first set the

“engr” switch to be accesible by the Ryu controller using the following command: ovs-vsctl set-

controller engr tcp:192.168.2.1:6653 The OpenFlow is also set to listen on port 6632 in order

to access the OVSDB.

The following command is entered to start the QoS on Ryu controller. After Ryu connect to the

switch, it displayed the message showing the “dpid” of the switch that it join QoS switch showing:

[QoS][INFO] dpid= 00000021ccd02a48: Join qos switch. We also configure “ovsdb_addr” to

have access to the OVSDB by using this command: curl -X PUT -d ‘”tcp:127.0.0.1:6632’”
http://localhost:8080/v1.0/conf/switches/00000021ccd02a48/ovsdb_addr

Figure 5.8a: Video streaming without QoS

http://localhost:8080/v1.0/conf/switches/00000024....../ovsdb_addr

www.manaraa.com

82

Figure 5.8b: Video streaming with QoS

We also create two queues to be used using the following bandwidth allocation. The following is

used to set the queues on the switch: curl -X POST -d '{"port_name": "vport2", "type": "linux-
htb", "max_rate": "10000000", "queues": [{"max_rate": "800000"}, {"min_rate":

"9000000"}]}' http://localhost:8080/qos/queue/00000021ccd02a48

The flow entries to be used which include the match and subsequent action is curl -X POST -d
'{"match": {"nw_dst": 192.168.2.8", "nw_proto": "UDP", "tp_dst": "5004"},

"actions":{"queue": "1"}}' http://localhost:8080/qos/rules/00000021ccd02a48

Two tests are taken and snapshots are also taken. The first test is taken without the presence of

Qos configured on the switch. This is done by setting up a VLC server on host 1 and VLC on host

2. This is done to stream video from one host to the other to replicate a real life scenario where

video streaming services such as skype video has more priority than ordinary internet browsing or

data downloading. Iperf server is also set up on host 1 while iperf client is set up on host 2 (almost

simultaneoulsy with around 2s difference between the start times). From the attached image in

figure 5.8a, it is seen that the video scrambled a lot and not really viewable. This is due to the

sharing of bandwidth between the two services running while they both shared the bandwidth,

which led to the effect on the quality of the video.

The second test involves the use of QoS and queues are created and installed on the switch. After

the installation of queues and flow entries on the switch, we also start VLC server and iperf server

on host 1 and their respective client services on host 2 as we did in the first test. The two queues

were created, the first default queue q0 has 800kbps maximum out of the available 10Mbps while

the second has 9Mbps minimum bandwidth. It is seen from attached figure 5.8b that the video did

not scramble like it did in the first test without QoS. The use of queues make it easier to manage

www.manaraa.com

83

trafffic. This experiments also shows that QoS function well in SDN with the use of OpenFlow

protocol in the netwok.

5.2.8 Conclusion

In testing the functionality of QoS in SDN, this paper shows that the goals were achieved. The

testbed QoS functionality include per-interface traffic policing, per-flow QoS, DiffServ QoS and

the traffic monitoring with sflow. The first three scenarios testebed was created with Mininet while

Ryu controller, OpenvSwitch, iperf and sflow were used to achieve the objectives of this paper.

The last scenario, however, makes use of two virtual machines to confirm the functionality of QoS

in SDN with the use of VLC for video streaming. The QoS is set in the network by creating queues

and installed flow entries on the switch after which specific actions are matched to the queues to

function. The destination IP address and the destination port number was used in matching the

created queues with associated actions.

We, therefore, recommend the use of per-interface QoS with per-flow QoS or with DiffServ QoS

to get effective result and to manage the network resources. We also found out that QoS function

efficiently in SDN like as it is in traditional network. We were able to to use per-flow QoS which

can be used in smaller network with little number of QoS while we also use DiffServ technique

which is used at the edge router of bigger network and uses DSCP values for traffic

classification which also makes QoS planning easier. VLC video streaming was also used to

confirm the performance in real scenario where services such as skype or live youtube video

require higher priority. The limitation of this experiment is that only virtual network environment

is used, though this does not really have any significant diffence on the QoS performance. Future

work on this paper include the use of sflow to build a QoS and traffic monitoring and

management interface.

www.manaraa.com

84

6. SDN MONITORING AND VISUALISATION

6.1 Introduction
Network monitoring being part of network management involves the use of hardware or software

to monitor the network traffic. Network monitoring uses measurement techniques that may be

passive or active. Passive method measures the network traffic by observing the network without

invoking additional probing packet into the traffic. Lack of additional probing packets is major

advantage because there are no additional overheads in the network. Another advantage is that

network performance is not affected while the major disadvantage is that if not configured properly

it may not be suitable for a large network. Active method on the other hand work be invoking

packets in the network to monitor network traffic. Addition of probing packets in the network

create some additional overheads on the network which may affect network performance if not

configured properly.

Most of the time polling technique is used to request the traffic details and status of the networking

devices on the network. Traditional network usually uses Simple Network Management Protocol

(SNMP), NetFlow and sFlow to monitor the network. SNMP works by polling information request

per-interface on all ports to get full data from the switching device. NetFlow and sFlow works by

sampling 1in n packets to represent information requested. This reduces overhead in the network

as well.

 With an increase in the number of connected devices on the network, managing the network traffic

has been an issue for network administrators. Network traffic monitoring and visualization is of

great importance for Internet Service Providers (ISPs) and network administrators. Different

monitoring techniques that have been used earlier include monitoring the packets and ports on

networking devices. Monitoring enables the network to have better performance and gives the

network administrator ability to manage, plan and use the network resources efficiently.

Managing and configuring network with multiple devices from different vendors has been

cumbersome for network administrators. There is need to learn specific vendor configuration and

monitoring packages. To eliminate these vendor dependencies, a new network architecture was

developed called Software Defined Network (SDN). SDN separates the control plane from the

data plane in the network which are combined together in a traditional network device In other

words, SDN moves the network intelligence control plane to a logically centralised location and it

is responsible for configuration used in packet forwarding in the data plane that resides in the

forwarding hardware [80], [81].

Originally, the control plane is responsible for decision making regarding packet forwarding used

by the data plane which consists of switches and routers. The SDN controller represents the control

plane which connects to the data plane and placed in physically centralised or logically centralised

location. Unlike the traditional network that rely on protocols such as OSPF, EIGRP, RIP etc, SDN

makes use of OpenFlow protocol which is set as a standard and used for secured communication

www.manaraa.com

85

between the controllers and the switches in the network. OpenFlow uses secured TLS or SSL

connection for communication among devices

In this chapter, we develop SDN-MON which operates on the control and management plane and

it is used for monitoring and visualizing network traffic. We design SDN-MON on top of Ryu

topology viewer and SDNHub viewer [82]. SDN-MON which is webGUI which is an

improvement of SDNHub viewer. This improvement includes redesign of the interface and

integration of sFlow into the webGUI. The web GUI is built with the modification of earlier one

built by SDNHub [82].

6.2 Monitoring, Visualizing and Measurement.

Traffic monitoring and visualizing is a key management activity that should be taken seriously to

provide better services to end users and to maintain a good network resource management.

Network traffic changes dynamically and continual monitoring is required by network

administrators to keep the network in good condition. The parameters to monitor and measure

include packets and flows passing through the network devices [83]. In SDN, network traffic can

be of two categories namely: control traffic and data traffic. Control traffic represent the traffic

flow between SDN controller and switches on the network while data traffic is the traffic or data

communication between switches on the network [83]. Some of the parameter used include

throughput, latency, packet loss and bandwidth utilisation. All these parameters are used and

visualized on the CLI or GUI using RESTAPI with web interface.

SDN network monitoring uses CLI polling and sampling like traditional network but does not

utilise SNMP like traditional network. The mechanism behind traffic monitoring is of two parts

namely: real-time monitoring and statistical data monitoring [84]. Both can be visualized and

measured. Real-time monitoring works by using OpenFlow SDN controller and OpenFlow

protocol to monitor the network traffic. This is done by making use of API’s to configure, monitor,

and manage traffic entering or leaving the network devices. Statistical data monitoring makes use

of sFlow or NetFlow to sample data at a set interval on devices on the network and monitor them

to analyse the network for performance or error detection.

6.3 Design and Implementation

This section contains details on the design and the implementation. The design involves the use of

Ryu [43] and OpenFlow REST API, JSON and JavaScript which are used with sFlow. The design

comes in two-fold by using the inbuilt OpenFlow monitoring and sFlow. The inbuilt OpenFlow

monitoring makes use of RYU REST API to monitor the flow table, the flows and the ports. sFlow

on the other hand monitors and measures the traffic in the network by sampling the switches for a

specified time to get the status of the traffic on all the switches and all connected hosts.

www.manaraa.com

86

The two features are built and can be accessed on the web GUI. Both features are embedded in a

web GUI called SDN-MON and built with HTML, CSS and JavaScript. REST API and JSON are

used to update information needed to be displayed on the web interface. SDN-MON which is

webGUI is an improvement of SDNHub viewer [82] include redesign of the interface and

integration of sFlow with Mininet integration in the web GUI to satisfy the aim of this chapter.

6.4 Real-Time OpenFlow Monitoring

Monitoring SDN network requires the use of SDN controllers gathers data from the switches in

the network [85]. Unlike traditional networks where the forwarding plane and the control

intelligence reside in the switch, SDN-enabled OpenFlow switch acts more like a dumb switch

without connection to the SDN controller. OpenFlow protocol allows communication between

OpenFlow-enabled switches and the SDN controller on the network. In this chapter, Ryu controller

monitor application is used to examine the OpenFlow network monitoring [43]. The application

makes use of OpenFlow specification 1.3 features to monitor the flow statistics and Port statistics

information on the switches. Some of the features include “EventOFPStateChange”,

“OFPFowStatsRequest”, “OFPPortStatsRequest”, “OFPFlowStatReply” and

“OFPPortStatsReply”.

EventOFPStateChange is used for confirmation that a switch is being monitored which it does by

monitoring connection or disconnection between the controller and the switch.

OFPFlowStatsRequest query the switch to get statistical information related to flow entry. This

include flow table ID, output port, packets etc. OFPPortStatsRequest sends request to the switch

to get statistical information related to ports on the switch. All ports can be queried or specific port

can also be queried to get the required result. The OFPFlowStatsReply respond to the request from

OFPFlowStatsRequest by providing the statisticall information of each flow entry as requested.

OFPPortStatsReply on the other hand also responds to the request from OFPPortStatsRequest by

providing statistical information of each ports on the switch as requested. Both results of FlowStats

and PortStats can be displayed in JSON format which is useful with RESTAPI for visualizing on

a webGUI [66].

Some of the parameters measured and displayed by Flowstats include byte count, duration, packet

count, tableID and priority while Portstats measured parameters include port number, receive

packet count, receive byte count, receive error count, send packet count, sent byte count, and send

error count.

To demonstrate the features of the SDN-MON, we created a tree topology with four switches with

limitation to 10Mbps bandwidth. A simple switch Ryu application is also started with REST

application and ofctl_rest which is useful for JSON and browser visualisation. Figure 6.1 shows

SDN-MON with topology, statistics and sFlow graph tabs. The statistics tab contains the real-time

OpenFlow monitoring with the use of inbuilt OpenFlow features. The tab has Port Stats and Flow

www.manaraa.com

87

Stats section. The flow section shows the communication between host h1 and host h2 with the

duration packets and bytes count. This present the flows in the flow table. Figure 6.2 on the other

hand shows communication among 4 hosts on the network.

Figure 6.1: Flow Stats of 2 hosts

It shows communication between host h1 and host h2, and between host h3 and h5. The duration

in seconds, packets and bytes count are also displayed.

Figure 6.2: Flow Stats of 4 hosts

Figure 6.3 shows the port stats of the network. It consists of transmitted packets, transmitted bytes,

received packets and received bytes. It shows the switches that are being used and the ports on

each one of them that are used with updated data in every 5 seconds.

www.manaraa.com

88

Figure 6.3: Port Stats of 4 hosts

6.5 Statistical Data Monitoring

Statistical data monitoring of the network involves the use of two major players namely; NetFlow

and sFlow.

6.5.1 NetFlow

NetFlow was developed by Cisco to collect statistical information on IP traffic and monitor the

network traffic as well. NetFlow uses NetFlow collector that collects the data and processes the

data to be analysed by the NetFlow analyser. The duo is useful to visualize the source and

destination of traffic as well as bandwidth being used. NetFlow uses these 5-tuple (source IP

address, destination IP address, source TCP/IP port, destination TCP/IP port, and IP protocol

number) to track flow statistics for each flow on the switch or router [86].

NetFlow works by matching incoming packet to the flow cache. If a match occurs, the flow cache

entry is updated by incrementing the packet and byte count. NetFlow is a Cisco proprietary

protocol and only available on Cisco devices. Though it is also found on virtual switches such as

VMware ESX and OpenvSwitch. NetFlow can work in sampling mode by sampling 1 in N packets

that travel in or across a switch instead of every switch. The sampled flows are still sent to records

on the flow cache and exhibits some timeout which makes it not suitable for low-latency

monitoring. Another demerit of NetFlow is that it does not support LAN and VLAN monitoring

and requires high-end routers and switches [87].

6.5.2 sFlow

sFlow is a short form for sampled Flow. sFlow is a network technology standard used for network

traffic monitoring. sFlow provides a visualized view of the entire network and it is widely used

being a vendor independent monitoring technology. sFlow is embedded in multiple network

devices with growing support and it is cheaper than NetFlow [85]. Many proprietary network

www.manaraa.com

89

devices already have sFlow agents present on them. In SDN, most OpenFlow enabled switches

has sFlow embedded in them, this includes OpenvSwitch. SFlow uses a random sampling

technique to sample the data flow in the network [88].

It uses sFlow agent, a software incorporated on the switch to sample packets at a certain

configurable rate that can be set by the user [85]. It normally samples 1 in N packets. Based on the

size of the network, the sampling varies depending on arrival of the packets [83]. The sampled

data are then packaged info sFlow Datagram and sent over the network to an sFlow collector. This

has a lot of advantage over NetFlow because it utilizes little memory and CPU usage required by

the sFlow agent is minimal. The Datagram sent to the central sFlow collector is analysed to

produce a detailed, real-time network traffic information. The collected and analysed information

can be viewed using sFlow-RT, sFlowTrend and Ganglia and are accessed using REST API to be

equipped on web Graphical User Interface (GUI) [78], [87].

Some of the advantages of sFlow include the following:

• Accuracy: sFlow operates at wire speed and can accommodate and work well under heavy

loads.

• Scalable: sFlow scalability makes it easier to monitor network at different network speed

100Mbps, 1Gbps, 10Gbps, 100Gbps and higher. It can also monitor thousands of devices

using a single sFlow collector.

• Low Cost: sFlow uses a simple sampling algorithm that is easier to implement and has a

negligible processing power on the switching device.

• Timely: sFlow captured packets contain full view of traffic information and are up to date.

The Packets can be used to manage QoS and firewall.

6.5.3 Flow monitoring with sFlow.

Just like traditional network, OpenFlow switches in SDN are configured to use sFlow and

communicate with the SDN controller. SDN controller makes use of OpenFlow protocol to

communicate with switches on the network, and uses the same to gather information to be used in

building the topology of the network. sFlow can be used together with the controller and OpenFlow

to provide and create an environment with full network view and flow monitoring. Even though

SDN controllers make the forwarding decisions, sFlow integration on all the switches is used for

monitoring the traffic flow regarding the forwarding decision made by the controller.

www.manaraa.com

90

Figure 6.4: sFlow Stats of 2 hosts

Figure 6.5: sFlow Stats of 4 hosts

Using the same testbed that was used for real-time monitoring, the diagram in figure 6.4 and 6.5

shows the use of integrated sFlow in monitoring the network. Figure 6.4 shows the

commuication between host h1 and host h2. Additional communication between host h3 and host

h5 is shown in figure 6.5. The sFlow colour-coded transmission between two host in one

direction at a time, i.e transmitted and received traffic are represented with different colour and

are noted for easier visualisation. Figure 6.6 shows the throughput information between host h1

and host h2. The limit being 10Mbps as earlier configured in the testbed.

www.manaraa.com

91

Figure 6.6: sFlow showing Throughput

This chapter shows that SDN can be monitored and visualised by using the inbuilt OpenFlow

features and integrated sFlow into a web GUI. The web GUI can be used to monitor the traffic

on the network. It can also be modified with additional features as required by the user.

www.manaraa.com

92

7. CONCLUSION
This conclusion presents the testing of functionality and effectiveness of Software Defined

Network in a LAN environment. This thesis starts with the brief introduction to networking and

literature review on virtualization, SDN and OpenFlow protocol which is being used by OpenFlow

enabled switches in an SDN environment. Basically, SDN is the decoupling or separation of

control plane from the data plane in the network device. The separated control plane functions

effectively when it is being controlled from a centralised logical point.

OpenFlow uses a secured channel with TLS or SSL to communicate between an SDN controller

and the switches on the network. OpenFlow has gained popularity within the network device

vendors with newer switches being OpenFlow enabled. More features have been added to

OpenFlow since its inception, though specification 1.0 and 1.3 are more popular and used on

software and hardware switches. OpenFlow is integrated into the network stack and operates as an

encapsulation inside the application layer of the OSI model. Unlike the traditional network,

forwarding of incoming packet is based upon information on the flow table rather than forwarding

table used by the traditional network. OpenFlow protocol uses the flow table which also contain

flow entries for forwarding. Packets are forwarded whenever there is a match in the flow table. In

a case where there is no match, the packets are forwarded to the SDN controller for decision

making.

To achieve the goal of this research, some experiments have been carried out for testing and

analysis. Though the test was carried out in virtual environment with virtual machines and virtual

network switches, the expected results have been achieved. Communication between hosts have

been tested on a LAN environment and on a VLAN environment. The hosts communicated as

expected by transmitting and receiving packets. The research shows communication between hosts

in a LAN environment with analysis done on the packets being transmitted and received between

hosts on the LAN. The latency and throughput results achieved shows that SDN function well like

traditional network with less OpEx and CapEx.

VLAN 802.1q was also setup on the network and used to represent different departments in the

faculty. A tree topology testbed was setup to show the functionality of VLAN which is to break

broadcast domain thereby reducing broadcast storm and having a lesser load on the network

bandwidth. Hosts on one VLAN was not able to communicate with hosts on a different VLAN

even when they get their connection from the same switch. Also, hosts on same VLAN can

communicate, though default and static route need to be configured on the flow table before this

can be a success.

Securing the network require a firewall. The firewall testing uses different scenarios to test the

effectiveness of firewall in SDN. The tests make use of ICMP, TCP and HTTP protocols which

operate on layer 2 to layer 4 of the OSI model. Just like the traditional network, Access Control

Lists (ACL) were added to the flow table to create a policy. The results in the experiments show

that any host not listed in the policy are blocked while those listed are granted permission to

www.manaraa.com

93

communicate. Latency and throughput was also measured with firewall in place and was compared

with the ones without firewall. The results show that little overhead has been added to the network

due to the inclusion of firewall but this little overhead can be ignored because it is insignificant

though there may be a significant overhead in a much larger network environment.

Management of network resources is an important function that cannot be neglected by any system

administrator. QoS plays a major role in the management of network resources and should be put

in place in any network environment. Like traditional network, SDN also makes use of QoS to

control network bandwidth, latency and throughput. In the experiments in chapter 6, QoS uses

priority given to host attached to each interface on the switch or applications on the network to

control the network bandwidth. The experiments show the use of per-interface, IntServ and

DiffServ QoS classification. Per-Interface works by dropping excess packet that is more than the

configured acceptable bandwidth limit. It uses the ingress policing technique to drop excess

packets that are more than the configured bandwidth on a specific interface.

IntServ QoS was used in the per-flow traffic shaping where queues are created in the QoS rules

and are used on each interface of the switch to control the traffic. The results show that configured

destination port number get only what they are configured for. This has advantage over per-

interface QoS because each interface can have multiple queues for different port numbers which

also represent different applications. The major disadvantage is the requirement for configuration

of each interface on all the switches on the network. Thus, it can be concluded that per-flow with

IntServ is suitable for small to medium scale network environment and cannot be used in a larger

network.

DiffServ QoS with per-aggregate flow was also tested to solve the major disadvantage of

configuring each interface with required QoS rules for specific application or services. DiffServ

being a scalable QoS classification made it possible to configure the edge router with the required

QoS rules and policies instead of per-interface on every switch on the network which is used by

IntServ. The configured QoS uses DSCP values to mark the queues which are installed on the flow

tables. Multiple queues are created with different matching to the DSCP values which are used

with priority to manage the network bandwidth usage. This makes it easier to prioritise

organisation’s VOIP calls and video conference calls over video and large file download. A

practical example is shown with the use of DSCP value and higher priority given to a live video

used to represent a video conference call. The results show that the video scrambled without QoS

in place while the one with QoS plays very well without any distortion. This shows that QoS in

SDN is functional and effective to be used in the network and can perform well like traditional

QoS.

No network environment is complete without a good monitoring interface in place. In the last

chapter, we build a webGUI called SDN-MON used for monitoring and visualization. Traffic

monitoring and visualization is an important part of network management and should not be

neglected. The webGUI consist of a real-time OpenFlow monitoring and a statistical data

www.manaraa.com

94

monitoring. The real-time OpenFlow monitoring makes use of in-built OpenFlow features that

monitors the State change, Port Status and Flow Status on the switch. These three features make it

easier to monitor the state of the network switches and the results are displayed on the SDN-MON.

REST API is used in the displaying and monitoring and the data are displayed in an easy readable

format using JSON. Statistical data monitoring makes use of integrated sFlow for better

visualisation. SFlow presents visualisation of the entire network traffic. The random sampling

technology used by sFlow brings about effective monitoring without adding overheads to the

network.

Finally, this thesis has shown that SDN with OpenFlow is functional and effective like the

traditional network. Though it is still in working phase and is steadily being adopted by very few

organisation. The technology has proved to be a success and can be worked on for improvement

in areas such as security, cloud usage and other areas that need improvement.

www.manaraa.com

95

REFERENCES

[1] N. Feamster, J. Rexford and E. Zegura, “The Road to SDN - An intellectual history of

programmable networks,” Queue, vol. 11, no. 12, p. 21, December 2013.

[2] S. Azodolmolky, Software Defined Networking with OpenFlow, Birmingham: Packt

Publishing Ltd, 2013.

[3] ONF, “Software-Defined Networking: The new norm for networks,” 13 April 2012.

[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf. [Accessed 2 3 2015].

[4] T. D. Nadeau and K. Gray, SDN: Software Defined Networks, Sebastopol: O’Reilly

Media, 2013.

[5] G. Dasmalc, “UnderstandingSDNTechV1.pdf,” December 2014. [Online]. Available:

https://www.sdxcentral.com/wp-content/uploads/2014/12/UnderstandingSDNTechV1.pdf.

[Accessed 4 April 2016].

[6] X. Foukas, M. K. Marina and K. Kontovasilis, “Software Defined Networking Concepts,”

in Software Defined Mobile Networks (SDMN): Beyond LTE Network Architecture,

Chichester, John Wiley & Sons, Ltd, 2015.

[7] B. N. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka and T. Turletti, “A Survey of

Software-Defined Networking: Past, Present, and Future of Programmable Networks,”

IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.

[8] R. Wang, D. Butnariu and J. Rexford, “OpenFlow-based Server Load Balancing Gone

Wild,” in Proceedings of the 11th USENIX Conference on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services, Boston, 2011.

[9] H. Qian and D. Medhi, “Server Operational Cost Optimization for Cloud Computing

Service Providers over a Time Horizon,” in Proceedings of the 11th USENIX Conference

on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services,

Boston, 2011.

[10] S. Sarkar, R. Mahindru, R. A. Hosn, N. Vogl and H. V. Ramasamy, “Automated Incident

Management for a Platform-as-a-service Cloud,” in Proceedings of the 11th USENIX

Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and

Services, Boston, 2011.

www.manaraa.com

96

[11] D. Breitgand, G. Kutiel and D. Raz, “Cost-aware Live Migration of Services in the Cloud,”

in Proceedings of the 3rd Annual Haifa Experimental Systems Conference, Haifa, 2010.

[12] S. Yegulalp, “Five SDN Benefits Enterprises Should Consider,” 7 December 2013.

[Online]. Available: http://www.networkcomputing.com/networking/five-sdn-benefits-

enterprises-should-consider/70381323. [Accessed 4 April 2016].

[13] N. Sharma, “Eight Big Benefits of Software-Defined Networking,” IT Business Edge, 20

January 2015. [Online]. Available: http://www.serverwatch.com/server-tutorials/eight-big-

benefits-of-software-defined-networking.html. [Accessed 4 April 2016].

[14] Intel Architecture Processors Networking and Communications, “Open, Simplified

Networking Based on SDN and Network Functions Virtualization,” [Online]. Available:

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sdn-part-1-

secured.pdf. [Accessed 4 April 2016].

[15] B. A. Forouzan, Data Communications and Networking, New York: McGraw-Hill, 2007.

[16] A. S. Tanenbaum, Computer Networks, New Jersey: Pearson Prentice Hall, 2011.

[17] T. Lammle, CCNA: Cisco Certified Network Associate Study Guide, Indianapolis: Wiley

Publishing, Inc., 2011.

[18] VMware, “Virtualization,” VMware, [Online]. Available:

http://www.vmware.com/virtualization/how-it-works. [Accessed 02 11 2015].

[19] TechTarget, “What is virtualization,” Techtarget, [Online]. Available:

http://searchservervirtualization.techtarget.com/definition/virtualization. [Accessed 02 11

2015].

[20] L. I. B. López, Á. L. V. Caraguay, L. J. G. Villalba and D. López, “Trends on virtualisation

with software defined networking and network function virtualization,” The Institution of

Engineering and Technology, vol. IV, no. 5, pp. 255-263, 2015.

[21] S. Azodolmolky, P. Wieder and R. Yahyapour, “SDN-Based Cloud Computing

Networking,” in International Conference on Transparent Optical Networks, Cartagena,

2013.

[22] M. Pretorius, M. Ghassemian and C. Ierotheou, “An Investigation Into Energy Efficiency

Of Data Centre Virtualization,” in International Conference on P2P, Parallel, Grid, Cloud

and Internet Computing, Fukuoka, 2010.

www.manaraa.com

97

[23] A. Hameed and A. N. Mian, “Finding efficient VLAN topology for better broadcast

containment,” in The 2012 Third International Conference on the Network of the Future,

Tunis, 2012.

[24] AT&T: Margaret Chiosi, Steve Wright; BT: Don Clarke, Peter Willis, Andy Reid., “ETSI

NFV White paper,” 17 October 2014. [Online]. Available:

http://portal.etsi.org/NFV/NFV_White_Paper3.pdf . [Accessed 08 September 2015].

[25] W. Shen, M. Yoshida, T. Kawabata, K. Minato and W. Imajuku, “vConductor: An NFV

Management Solution for Realizing End-to-End Virtual Network Services,” in The Asia-

Pacific Network Operations and Management Symposium (APNOMS), Hsinchu, 2014.

[26] Z. Bronstein and E. Shraga, “NFV Virtualisation of the Home Environment,” in IEEE

Consumer Communications and Networking Conference (CCNC 2014) Special Seesion:

Network Function Virtualization, Las-Vegas, 2014.

[27] Cisco, “Quality of Service (QoS),” Cisco, [Online]. Available:

http://www.cisco.com/c/en/us/products/ios-nx-os-software/quality-of-service-

qos/index.html. [Accessed 09 November 2015].

[28] Cisco, “QoS on the Cisco ASA Configuration Examples,” Cisco, 19 December 2014.

[Online]. Available: http://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-

series-next-generation-firewalls/82310-qos-voip-vpn.pdf. [Accessed 09 11 2015].

[29] C. Lewis and S. Pickavance, Selecting MPLS VPN Service, Indianapolis: Cisco Press,

2006.

[30] TechTarget, “What is Data center?,” [Online]. Available:

http://searchdatacenter.techtarget.com/definition/data-center. [Accessed 4 May 2016].

[31] Palo Alto Networks, “What is a data centre?,” [Online]. Available:

https://www.paloaltonetworks.com/documentation/glossary/what-is-a-data-center.

[Accessed 4 May 2016].

[32] Interxion, “What is a Data Centre?,” [Online]. Available: http://www.interxion.com/data-

centres/. [Accessed 4 May 2016].

[33] P. Göransson and C. Black, Software Defined Networks: A Comprehensive Approach,

Waltham: Morgan Kaufmann, 2014.

[34] H. Khosravi and T. Anderson, “ Requirements for Separation of IP Control and

Forwarding,” The Internet Society, 2003.

www.manaraa.com

98

[35] Stanford University, “Clean Slate Design for the Internet,” [Online]. Available:

http://cleanslate.stanford.edu/research_project_ethane.php. [Accessed 12 January 2015].

[36] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown and S. Shenker, “Ethane:

Taking Control of the Enterprise,” in SIGCOMM’07, Kyoto, 2007.

[37] Z. Khattak, M. Awais and A. Iqbal, “Performance Evaluation of OpenDaylight SDN

Controller,” in Parallel and Distributed Systems (ICPADS), 2014 20th IEEE International

Conference on, Hsinchu, 2014.

[38] F. Wang, H. Wang, B. Lei and W. Ma, “A Research on High-Performance SDN

Controller,” in Cloud Computing and Big Data (CCBD), 2014 International Conference

on, Wuhan, 2014.

[39] S. Scott-Hayward, “Design and deployment of secure, robust, and resilient SDN

controllers,” in Network Softwarization (NetSoft), 2015 1st IEEE Conference on, London,

2015.

[40] M. Casado, “List of OpenFlow Software Projects,” Stanford University, [Online].

Available: http://yuba.stanford.edu/~casado/of-sw.html. [Accessed 25 January 2016].

[41] Trema, “Trema,” [Online]. Available: http://trema.github.io/trema/. [Accessed 25 January

2016].

[42] Project Floodlight, “Floodlight OpenFlow Controller - Project Floodlight,” Big Switch

Networks, [Online]. Available: http://www.projectfloodlight.org/floodlight/. [Accessed 26

January 2016].

[43] Ryu, “Ryu SDN Framework,” [Online]. Available: http://osrg.github.io/ryu/. [Accessed 5

May 2015].

[44] Linux Foundation, “Lithium | Opendaylight,” Linux Foundation, [Online]. Available:

https://www.opendaylight.org/lithium. [Accessed 25 January 2016].

[45] Flowvisor, “Home . opennetworkinglab/flowvisor wiki . GitHub,” GitHub, [Online].

Available: https://github.com/OPENNETWORKINGLAB/flowvisor/wiki. [Accessed 26

January 2016].

[46] RouteFlow, “GitHub - routeflow/RouteFlow:Virtual IP Routing Services over OpenFlow

networks,” GitHub, [Online]. Available: https://github.com/routeflow/RouteFlow.

[Accessed 25 January 2016].

www.manaraa.com

99

[47] A. Lara, A. Kolasani and B. Ramamurthy, “Network Innovation using OpenFlow: A

Survey,” IEEE COMMUNICATIONS SURVEY & TUTORIALS, vol. 16, no. 1, pp. 493-512,

2014.

[48] Open Networking Foundation, “Open Flow - Open Networking Foundation,” Open

Networking Foundation, [Online]. Available: https://www.opennetworking.org/sdn-

resources/openflow. [Accessed 29 January 2016].

[49] SDxCentral, “Comprehensive List: SDN Switching & Routing Products,” SDxCentral,

[Online]. Available: https://www.sdxcentral.com/comprehensive-list-hardware-switching-

routing/. [Accessed 1 February 2016].

[50] Open vSwitch, “GitHub - openvswitch/ovs: Open vSwitch,” GitHub, [Online]. Available:

https://github.com/openvswitch/ovs. [Accessed 2 February 2016].

[51] Open vSwitch, “Open vSwitch,” Open vSwitch, [Online]. Available:

http://openvswitch.org/. [Accessed 2 February 2016].

[52] Project Floodlight, “Indigo Virtual Switch - Open Source OpenFlowProject Floodlight,”

Big Switch, [Online]. Available: http://www.projectfloodlight.org/indigo-virtual-switch/.

[Accessed 02 February 2016].

[53] Ericsson Innovation Center, “GitHub - CPqD/ofsoftswitch13: OpenFlow 1.3 switch,”

GitHub, [Online]. Available: https://github.com/CPqD/ofsoftswitch13/. [Accessed 2

February 2016].

[54] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, March 2008.

[55] Open Networking Foundation, “openflow-switch-v1.3.4.pdf,” 27 March 2014. [Online].

Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-switch-v1.3.4.pdf. [Accessed 30 March 2015].

[56] F. Hu, Network Innovation through OpenFlow and SDN: Principles and Design, F. Hu,

Ed., CRC Press, 2014.

[57] Mininet Team, “Introduction to Mininet . mininet/mininet Wiki . Mininet,” GitHub,

[Online]. Available: https://github.com/mininet/mininet/wiki/Introduction-to-Mininet.

[Accessed 1 March 2016].

www.manaraa.com

100

[58] Mininet Team, “Mininet: An Instant Virtual Network on your Laptop (or other PC) -

Mininet,” Mininet, [Online]. Available: http://mininet.org/. [Accessed 15 March 2015].

[59] R. Khondoker, A. Zaalouk, R. Marx and K. Bayarou, “Feature-based comparison and

selection of Software Defined Networking (SDN) controllers,” in Computer Applications

and Information Systems (WCCAIS), 2014 World Congress on, Hammamet, 2014.

[60] Ryu, “Ryu Documentation Release 3.21,” [Online]. Available: http://osrg.github.io/ryu/.

[Accessed 15 May 2015].

[61] iperf, “iPerf - The TCP, UDP and SCTP network bandwidth measurement tool,” ESnet /

Lawrence Berkeley National Laboratory., [Online]. Available: https://iperf.fr/. [Accessed 7

March 2016].

[62] Netperf, “The Netperf Homepage,” [Online]. Available: http://netperf.org/netperf/.

[Accessed 7 March 2016].

[63] about.com, “curl - Linux Command Unix Command,” [Online]. Available:

http://linux.about.com/od/commands/l/blcmdl1_curl.htm. [Accessed 7 March 2016].

[64] Slashroot.in, “CURL command Tutorial in Linux with Example Usage,” [Online].

Available: http://www.slashroot.in/curl-command-tutorial-linux-example-usage. [Accessed

7 March 2016].

[65] U. Lamping, R. Sharpe and E. Warnicke, “Wireshark User Guide,” [Online]. Available:

https://www.wireshark.org/download/docs/user-guide-a4.pdf. [Accessed 7 March 2016].

[66] Ryu, “Ryubook.pdf,” [Online]. Available: https://osrg.github.io/ryu-book/en/Ryubook.pdf.

[Accessed 9 August 2017].

[67] Postdot Technologies, Inc, “Postman | Supercharge your API workflow,” [Online].

Available: https://www.getpostman.com/. [Accessed 28 November 2016].

[68] S. Morzhov, I. Alekseev and M. Nikitinskiy, “Firewall Application for Floodlight SDN

controller,” in 2016 International Siberian Conference on Control and Communications,

Moscow, 2016.

[69] R. Nivedhitha, S. Abirami, K. R. Bala and N. R. Raajan, “Proficient Toning Mechanism for

Firewall Policy Assessment,” in 2015 International Conference on Circuit, Power and

Computing Technologies [ICCPCT], Tamil Nadu, 2015.

www.manaraa.com

101

[70] F. Yan, Y. Jian-wen and L. Cheng, “Computer Network Security and technology

Research,” in 2015 Seventh International conference on Measuring Technology and

Mechatronics Automation, Nanchang, 2015.

[71] S. Dhaval and R. D. Raviya, “Analysis of Software Defined Network Firewall (SDF),” in

IEEE International Conference on Wireless Communication, Signal Processing and

Networking (WiSPNET), Chennai, 2016.

[72] S. T. Yakasai and C. G. Guy, “FlowIdentity: Software-Defined Network Access Control,”

in IEEE Conference on Network Function Virtualization and Software Defined Network

(NFV-SDN), San Francisco, 2015.

[73] Lifewire, “Introduction to Latency on Computer Networks,” [Online]. Available:

https://www.lifewire.com/latency-on-computer-networks-818119. [Accessed 7 February

2017].

[74] Esnet, “iperf3 - iperf3 3.16 documentation,” Energy Sciences Network, [Online].

Available: http://software.es.net/iperf/. [Accessed 31 January 2017].

[75] M. Devera, “HTB,” Iartc.org, [Online]. Available: http://lartc.org/manpages/tc-htb.html.

[Accessed 11 April 2017].

[76] OpenvSwitch, “"Quality of Service (QoS) - Open vSwitch 2.7.90 documentation,” The

Linux Foundation, [Online]. Available: http://docs.openvswitch.org/en/latest/faq/qos/.

[Accessed 20 April 2017].

[77] T. Szigeti, C. Hattingh, R. Barton and K. Brilev, “End-to-End QoS Network Design,” in

Cisco Press, Indianapolis, 2014.

[78] sFlow.org, “sFlowOverview.pdf,” [Online]. Available:

http://www.sflow.org/sFlowOverview.pdf. [Accessed 20 April 2017].

[79] VideoLan, “Official Download of VLC media player, the best Open Source player -

VideoLan,” VideoLan, [Online]. Available: http://www.videolan.org/vlc/index.html.

[Accessed 25 April 2017].

[80] L. Zhao, J. Hua, X. Ge and S. Zhong, “Traffic Engineering in Hierarchical SDN Control

Plane,” in IEEE 23rd International Symposium on Quality of Service (IWQoS), Portland,

2015.

www.manaraa.com

102

[81] I. F. Akyildiz, A. Lee, P. Wang, M. Luo and W. Chou, “Research Challenges for Traffic

Engineering in Software Defined Networks,” IEEE Network, vol. 30, no. 3, pp. 52-58,

2016.

[82] SDN Hub, “SDN starter kit based on Ryu controller platform | SDN Hub,” [Online].

Available: http://sdnhub.org/releases/sdn-starter-kit-ryu/. [Accessed 10 August 2017].

[83] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho and C. Yang, “traffic engineering in

software defined networking measurements and management,” IEEE Access, pp. 3246-

3256, 21 June 2016.

[84] Y.-Y. Yang, W.-H. Cheng, C.-T. Yang, S.-T. Chen and F.-C. Jiang, “The Implementation

of Real-Time Network Traffic Monitoring Service with Network Functions Virtualization,”

in 2015 IEEE Fifth International Conference on Big Data and Cloud Computing

(BDCloud), Dalian, 2015.

[85] J. Boite, P.-A. Nardin, F. Rebecchi, M. Bouet and V. Conan, “StateSec: Stateful

Monitoring for DDoS Protection in Software Defined Networks,” in Network

Softwarization (NetSoft), 2017 IEEE Conference on, Bologna, 2017.

[86] J. Suh, T. Kwon, C. Dixon, W. Felter and J. Carter , “OpenSample: A Low-latency,

Sampling-based Measurement Platform for Commodity SDN,” in 2014 IEEE 34th

International Conference on Distributed Computing Systems, Madrid, 2014.

[87] S. U. Rehman, W.-C. Song and M. Kang, “Network-Wide Traffic Visibility in OF@TEIN

SDN Testbed using sFlow,” in 2014 16th Asia-Pacific Network Operations and

Management Symposium (APNOMS), Hsinchu, 2014.

[88] L. Huang, X. Zhi, Q. Gao, S. Kausar and S. Zheng, “Design and Implementation of

Multicast Routing System over SDN and sFlow,” in ICCSN-IEEE 2016 : 2016 8th

International Conference on Communication Software and Networks (ICCSN 2016),

Beijing, 2016.

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28284473

28284473

2021

